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Abstract

A Physics-based Virtual Reality Framework for Medical Training and Simulation

Medical simulation offers the opportunity to revolutionize the training of medical pro-

fessionals, from paramedics to physicians and surgeons, allowing early learning to occur

in a safe, controllable, and configurable virtual environment, without putting patients at

risk. However, the complexity of the problems involved in the development of medical

training systems as well as the spectrum of scientific fields that need to be covered have been

the major limiting factors for the achievement of realistic simulations. The current state

of the field of medical simulation is characterized by scattered laboratories or commercial

entities using a variety of models that are neither interoperable nor independently verifiable,

resulting in a steep development curve, duplication of efforts, high cost for simulators, and

slow adoption of the technology. There have been some attempts to provide open-source

standardization. However, they offer a collage of specialized solvers for different substances

(bones, tissues, fluids, etc.), which creates redundant work and does not provide stable

and efficient two-way interactions between all object types. More importantly, most of the

current available simulation systems do not provide a means for automated assessment that

can record, visualize, and analyze trainees’ performances through quantitative measures,

which is an often neglected aspect of medical training.

This dissertation addresses the issues of medical simulation in an attempt to bridge the

gap left by previous works. We propose a practical and efficient virtual reality simulation

framework that converts the training of medical procedures to a completely immersive

virtual environment where both visual and physical realism are achieved. Our generaliz-

able framework embeds independent dynamics models and interaction devices in separate

modules while allows them to interact with each other within the same environment, which

offers a flexible solution for multi-modal medical simulation scenarios and enables new

simulators to be built efficiently. Our framework includes simulation of all human body
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constituents, such as bones, soft tissues, and fluids (e.g., blood, secretions), in a unified

particle representation using position-based dynamics, which enables different simulated

substances to interact with each other seamlessly and allows for efficient modeling of large

objects with different properties in real time. Our system supports inputs of patient-specific

anatomies from many sources (serial-section, volumetric, or surface scans), which provides

realistic anatomical structures and can be parameterized to allow variations in a range of

features that affect the level of difficulty. Most importantly, with virtual representation of all

the components involved in the procedure, our automated assessment system can capture

and visualize a whole set of performance parameters of the instruments in relation to the

geometric change of the virtual model for real-time guidance and post-trial assessment.

In addition, an interpretable automated scoring algorithm is developed that uses machine

learning to mimic the evaluation of human raters. Finally, we demonstrate the utility of the

framework by developing a test-bed application for neonatal endotracheal intubation. The

clinical realism of the VR simulator and the validity of the automated assessment system

were evaluated with a group of neonatologists using qualitative and quantitative measures.

v
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Chapter 1: Introduction

Virtual Reality (VR) is a way for humans to visualize, manipulate, and interact with com-

puters and complex data. This technology attempts to immerse the user into a computer-

generated world representing reality. The user can interact with the virtual world and directly

manipulate objects in it. Most of the current VR environments are primarily visual expe-

riences, rendered either on a computer screen or through head-mounted displays (HMD).

There are some advanced systems, which include additional sensory modalities, such as

tactile information through haptic or force feedback devices.

VR has a wide variety of applications in many different fields, such as video games and

flight simulation. VR-based flight simulation, as a classic success story of VR applications,

has proven the feasibility to build reliable virtual training systems that are not only virtual

but also subjectively real. It artificially re-creates aircrafts and the environment in which it

flies and has been extensively used by the aviation industry for the design and development

of prototype airplanes and training of pilots. VR is also finding its way into the training of

healthcare professionals. VR based medical simulators recreate actual procedures in a virtual

environment, which is very useful for the purpose of training, rehearsal, or experiment.

Virtual procedures are carried out with the help of advanced techniques and devices in the

fields of electronics, robotics, and computer graphics to create human-machine interfaces

and to provide visual and force feedback to the user.

Virtual training systems can improve trainees’ learning curves with safety, efficiency,

flexibility, and without the fear and anxiety of performing live procedures on patients before

entering the operating room (OR), thereby improving patient safety. VR simulators have

been expected to be an important part of medical training since the early 1990s [74]. A

survey shows that 83% of the directors of surgery training programs believe that there is a

role for computer-based training systems in surgical training [29][31]. While their initial

1
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cost might seem expensive, VR simulators can in fact be cost-effective when considering the

broader economic benefits of better-trained medical professionals and resource optimization

[9], including savings on instructor time, error reduction and faster completion times [76][1].

Moreover, VR simulators can be used to explore new ways of performing a procedure,

prototyping medical equipment or getting familiar with new surgical techniques or devices

[62]. Recent reviews show that, although VR simulation is successfully used in various

medical domains, there is still enormous potential for further development [25][14][60].

1.1 Motivation

Various training methods have been used in order to train medical students for live procedures.

The closer the model is to the real patient, the greater the benefits. Many of the current

methods have some serious drawbacks. In traditional teaching, performing live operations

under the supervision of experienced experts has been a practical solution in many scenarios.

However, opportunities to practice skills are often limited by availability of instructors

and access to willing patients. Practicing of any non-expert on patients exposes these

patients to increased risk. In addition, it will inevitably involve a long learning curve for the

trainee to gain adequate skills to become a qualified surgeon. This apprenticeship model is

based on a high-volume, hands-on training with gradually decaying level of supervision,

until the trainee is judged by the mentor to be competent enough to operate on his/her

own. Improvements in quality and safety standards in this kind of training yields the

apprenticeship model insufficient to create a competent surgeon in a patient-safe way. As a

result, the pressure on training outside the OR has increased. The use of human cadavers

gives good anatomical accuracy, however, the tissue response is not that close to live tissue.

There is also limited availability and high cost associated with storage. When trainee is

practicing on these subjects, there is little indication as to the success of the attempt, and

the lack of readily available new cadavers restricts their use in everyday training. An

alternative that can remedy the issue of the lack of realistic tissue response is to use live

2
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animals. Unfortunately, this comes with additional ethical issues, and the anatomy may

be quite different from humans’. Using inexpensive, low-fidelity physical task trainers

or manikins can alleviate ethical concerns and allow learners to achieve some level of

competence with greater repeatability, however, silicon, foam or plastic parts used in task

trainers, lack physiological behaviour and different biomechanical properties compared to

human tissue and provide little variation in anatomy or difficulty level. Hence, these methods

do not provide sufficient realism. Consequently, learners who train on one manikin may

develop model-specific techniques that may not transfer to patients or even other manikins.

These manikins might also be limited in the types of procedure that can be practiced on

them. Lastly, assessment of trainees’ performance under artificially ideal conditions likely

overestimate their skill level since they do not mimic the stressors and distractions that

are inherent in the real clinical environment. Thus, there is a pressing need for innovative

training modalities that can bridge the gap left by traditional training methods and thereby

allow rapid skill acquisition.

The solution presented to remedy the concerns of previous training methods is to create a

virtual training system with realistic visual/haptic feedback. High-fidelity VR-based training

systems offer an elegant solution to the current need for better training in the medical field.

They provide a realistic, controllable, and configurable training environment free from

ethical issues in which trainees can repetitively practice without putting patients at risk. In

addition, some of the rare pathological conditions and emergency procedures can only be

recreated and trained on a simulator. These tasks can be scheduled without additional cost

concerns. Virtual trainers initiate scenarios with each starting point pertinent to individual

progress of each trainee, instead of restarting from the beginning each time. Once created, a

virtual trainer can be replicated to the desired degree. A virtual training can be converted

into a rehearsal or simulation planning by an update of patient-specific input. Virtual trainers

have completely control over their virtual environments to adjust variations or change levels

of difficulty, such that every simulated object can be selectively presented, modified or

3
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concealed, for expected training configurations that are not available in the real world.

Finally, simulators make training and skills acquisition more efficient through the use of

quantifiable measures. The simulation can provide quantitative feedback as to the trainees’

skill and areas requiring improvement. It is a great learning tool where the trainee is allowed

to go back and see what went wrong, and how to improve, with an objective evaluation of

the trainees’ dexterity. It brings more engagement and realism to the process. After training

with these methods, the next step is to move on to supervised live practice trials. In this

case, it is important that the trainee comes into the OR having been well practiced and with

confidence in order to reduce patient harm.

1.2 Problem Statement

The design and development of a VR medical simulator is a complex process requiring the

integration, within a single environment, of leading-edge solutions from multiple disciplines,

such as computing, engineering, physics, medicine, and human factors. As a result, it

can be laborious and time consuming for developers with expertise in even a few of these

disciplines to build a simulator that can pass validation and be ready for clinical deployment.

Despite the fact that many of the requisite technologies have matured to a level that supports

the degree of realism required, the implementation of simulation software for the realistic

and compelling recreation of medical procedures is still a challenging and open problem.

As the capability of computing resources has increased over the years, the complexities

of medical procedures being simulated have also increased. A typical medical scene now

involves much more than just tool-tissue interactions. Simulations of multiple tissues and

organs, medical instruments, and devices, coupled fluid flows due to bleeding and modelling

of the physiological consequences of procedures are becoming common. To achieve a

certain degree of realism in such complex interaction scenarios, the simulation environments

need to support the following:

• Modeling heterogeneous scenes composed of different substances (bones, tissues, and

4
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fluids) with complex geometry and material properties;

• Dynamic and real-time interactions (palpation, probing, grasping, cutting, cauterizing,

etc.) between virtual objects and various instruments physically manipulated by the

user;

• Robust collision detection/resolution for frequent tool-tissue interactions;

• Multi-modal (visual, haptic, and auditory) rendering of the results to the user.

Among these components, deformable modeling and collision detection are two bottlenecks

of real-time computation. Besides the above important components, an effective medical

training system should also include an automated assessment component which can provide

automated feedback during/after each training session and quantitatively evaluate and

measure trainees’ performances.

Currently, VR medical simulators tend to be constructed independently of any universally

accepted systematic framework. Each laboratory or commercial entity tends to use its own

library of proprietary software, resulting in an ad-hoc collection of simulation engines,

application program interfaces (API), and software development kits (SDK). This has

resulted in a steep development curve, duplication of efforts, high cost for simulators, and

slow adoption of the technology. This is a major impediment to wide acceptance and use

of VR simulators, since each new medical domain for simulators tends to result in a new

stand-alone system.

There have been some attempts to provide open-source standardization. However, they

offer a collage of specialized solvers for different substances, such as rigid, deformable,

and fluid objects, which creates redundant work and does not provide stable and efficient

two-way interactions between all object types. They also do not provide a means for

automated assessment that can record, analyze, and visualize trainees’ performances, which

is a neglected aspect of medical simulators.

5
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In response to this need, we have developed a practical and efficient simulation and

training framework that includes a stable and efficient modeling method for seamless

simulation of all object types as well as the capability of incorporating an automated

assessment system. Our generalizable framework will enable new simulators to be built

efficiently. This work will significantly advance the practical use of VR simulators in a

variety of procedures. We will demonstrate the validity of the framework by developing an

test-bed application for neonatal endotracheal intubation (ETI) simulation, which captures

the most important aspects of the aforementioned general problem we are trying to address.

1.3 Proposed Solution

Our work aims at developing and evaluating a physics-based VR simulation framework

for medical training and simulation. This involves designing and implementing software

solutions combining realistic simulation, visualization and interactions. The software will

be integrated with third-party displays, tracking, and haptic devices in order to deliver a

complete VR training experience. The simulation framework presented in this disserta-

tion improves the effectiveness of VR medical simulation and training by addressing the

following aims:

• Build a fully interactive VR simulation system that integrates, in the same environment,

different dynamics models and interaction devices;

• Offer a completely immersive virtual environment where both visual and physical

realism are achieved;

• Support realistic anatomical models from many sources of patient-specific anatomies

that can parametrically adjust features that vary the levels of difficulty;

• Simulate heterogeneous human body constituents, including bones, soft tissues, and

fluids, in a unified solver based on position-based dynamics (PBD);
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• Evaluate the clinical realism of the VR simulator by conducting a validation study

using quantitative and qualitative measures;

• Develop an automated assessment that can captures all motions and gives a complete

visualization of the procedure for real-time guidance and post-trial assessment;

– Our automated visualization tools can visualize a whole set of performance

parameters that our experienced instructors consider important in their subjective

assessment of performance.

– More importantly, our automated scoring system provides an interpretable au-

tomated prediction model that uses a machine learning algorithm to mimic the

evaluation of human raters.

1.4 Organization of Dissertation

The dissertation is structured as follows. Chapter 2 critically reviews and summarizes the

current state-of-the-art of VR medical simulations and the relevant existing frameworks

that are available for VR medical simulation development. Chapter 3 presents the main

contributions of our work. The design of the generalizable simulation framework and details

of the implementation are explained. Chapter 4 describes the core simulation modeling

method of our framework, which is based on PBD to simulate hybrid scenarios, such as rigid

body, soft body, and fluids, and their interactions in a unified particle representation. Chapter

5 describes an application that is implemented using the proposed framework, which is

the simulation of neonatal ETI, and presents the concurrent validation study of the ETI

simulation system compared to traditional manikin-based simulator. Chapter 6 describes the

automated assessment algorithms for ETI performance and the results of the experiment.

Finally, Chapter 7 concludes the dissertation and proposes possible future work.
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Chapter 2: Related Work

This chapter explores the benefits of VR simulation-based medical training and reviews the

current state-of-the-art of VR medical simulators and the relevant existing frameworks that

are available for VR medical simulation development.

2.1 Virtual Reality Medical Simulators

VR-based medical simulator simulates an environment for the purpose of surgery or medical

procedure training. It provides a safe, real-time interactive deformation of the organs and

haptic feedback for different kinds of tool-tissue interactions. It helps medical professionals

get familiar with the anatomy and practice the skills of the procedure prior to clinic exposure.

VR simulation has come a long way in the past decade and has now reached a point where it

has been demonstrated to effectively improve learning outcomes in clinical settings [76].

Depending on how much tissue deformation is involved in the procedure, the simulation

complexity can be categorized into classes from no deformation, such as dental and bone

surgery, to small deformation, such as bronchoscopy, colonoscopy, and endoscopy, and to

large and complex deformation, such as laryngoscopy and laparoscopy. This section details

a selection of the most relevant VR medical simulations currently available.

2.1.1 Dental and Bone Surgery Simulators

The main interaction for both dental and bone surgery is the manipulation and modelling of

rigid structures (bones or teeth) with surgical tools. Therefore, the methods developed for

these simulators are very similar. These simulators commonly represent rigid structures as

volumetric models, which is referred to as voxel-based surgical simulation.

Several interactive VR medical training simulations with haptic feedback have been

developed, including Temporal Bone Surgery [53], Craniofacial Surgery [86], and Dental
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Surgery [81]. The type of interaction supported by each of the simulators is very similar:

volumetric tissue removal of rigid bone (or tooth) tissue. The haptic feedback is computed in

real time from the interaction of the tool with the voxel-based representation of the bone or

tooth. Moreover, additional fidelity and effect is added to simulate the forces resulting from

the motion of the abrading tool tip. However, this approach does not support volumetric

tissue removal from deformable tissues.

2.1.2 Endotracheal Intubation Simulators

ETI is a time sensative and life-saving procedure that is commonly performed on patients

in order to maintain a clear airway and for administering a general anaesthetic [30]. The

procedure can be briefly summarized as using a laryngoscope to manipulate the tongue and

epiglottis, and insert a tube into the trachea.

The interaction of the laryngoscope with the tongue and the epiglottis are the keys to

the success of the simulator. The tongue and the epiglottis must deform realistically in real

time in response to contact with the laryngoscope. Realistic visco-elastic modelling of the

deforming tongue is especially challenging. The tongue is a large muscle with internal

variability and dynamic behaviour even when the patient is unconscious. ETI simulation is

often associated with physical manikin simulators rather than computer-based simulators. A

few VR ETI simulation systems have been developed; however, most of them allow limited

interactions and/or do not simulate the physics of the virtual models.

Rodrigues et al. were the first to create a real-time interactive mechanical model of the

tongue [69][70][71]. Their biomechanical model of the upper airway included the tongue,

ligaments, larynx, vocal cords, and bony landmarks at relatively low resolution in order

to achieve real-time performance [71]. The finite element method (FEM) was employed

to simulate the behaviour of the tongue, from simple linear elastic material to complex

non-linear visco-elastic material [71]. The described configuration of the mechanical system

is intricate, which includes specialised hidden mechanical interconnections to impart the
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desired properties [69]. Empirical validation of the model was performed, which showed

that the non-linear model behaves most closely to the experimental studies [70]. The visual

quality of their simulator is poor by today’s standards; models consist of low numbers

of flat-shaded polygons with no textures or realistic surface details. The simulation and

insertion of the endotracheal tube (ETT) were not implemented. Mayrose et al. developed

an intubation simulator that uses mass-spring model for soft tissue deformation [48][49].

In order to achieve real-time performance, the system only allows the interactions of the

laryngoscope blade and the ETT with relevant soft tissues of the virtual model, which is not

fully interactive. The laryngoscope and the ETT are manipulated through a single haptic

device, which does not allow bimanual operation. The graphics are projected through a

semi-transparent mirror to allow the user to view through 3D glasses, which does not provide

a fully immersive experience in a virtual environment. Demirel et al. [18] developed a virtual

airway skills trainer in which only two tasks prior to the ETI procedure were simulated:

mallampati scoring and placing the patient in an optimal intubation position. Although their

system provides an immersive experience with HMD, it does not include simulation of the

actual intubation, which is more challenging and critical for ETI training.

An commerical airway lab VR simulator has been developed by Arch Virtual R©, in

which high-quality visual realism was achieved. However, their system only allows limited

interactions, such as the insertion of the endotracheal tube. Soft tissue deformation and

collision detections between the laryngoscope and the soft tissue/tube were not implemented.

Xia et al. [87] developed an interactive virtual ETI simulator, in which both visual and

physical realism were achieved. The laryngoscope and the endotracheal tube were each

attached to haptic devices, which allow for bimanual interactions during the procedure.

However, their system only simulated the deformation of the tongue and collisions between

the laryngoscope and tongue, which is not fully interactive. Rajeswaran et al. [65] developed

a VR-based immersive trainer consisting of two training modes: the animation mode

provides essential knowledge of the ETI procedure and visualization of the process of ETI
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in 3D space while the tutorial mode allows the user to carry out proper intubation in a virtual

environment by following step-by step on-screen instructions. However, their virtual model

only allows limited interactions, such as head elevation and jaw opening. Neither collision

detection of the tools with the virtual model nor soft tissue deformation was implemented,

both of which are essential for realistic simulation. The laryngoscope and the ETT are

controlled by two hand controllers, which is not intuitive and does not allow force feedback.

2.1.3 Minimally Invasive Surgery Simulators

Minimally invasive surgical (MIS) procedures (also known as keyhole surgery), such as

laparoscopy, is a modern surgical procedure in which operations in the abdomen are per-

formed through small incisions (usually 2-3 cm) as compared to open body surgery. A tiny

laparoscope, a telescopic rod lens system, with a video camera and a halogen or xenon light

source, is inserted through the incision to view the operative field. The surgery is performed

by observing the image received from the laparoscope on a computer monitor.

MIS procedures are well suited to VR simulation mostly because the user interface is

relatively easy to replace with equivalent devices interfaced to a computer. When performing

a real MIS procedure, the operator is guided by visual feedback from an fiber optic camera

displayed on a monitor, and haptic feedback via the handpieces of the surgical instruments.

Likewise, endoscopic procedures use visual feedback via the endoscope (presented on a

monitor) and haptic feedback via the endoscope handle.

Most of the current research on MIS simulation focuses on very specific topics, such

as soft tissue deformation for surgical simulation [78], surgical cutting/dissection [52] etc.,

rather than the practical framework. The available laparocopic surgery simulators in the

market, such as LapSim R©, aim only for training basic skills following strict and relatively

simplistic routines. They are not capable of simulating the whole surgery procedure. More

recently, the state-of-the-art Simbionix R© LAP Mentor
TM

simulator provides a structured

curriculum with different difficulty levels for training and monitoring basic laparoscopic
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skills as well as advanced full laparoscopic procedures. The system has the capabilities

of simulating a set of specially tailored and designed techniques, ranging from modeling

of complex anatomy, different tissue types and dissection planes, and realistic tool-tissue

interaction.

Aside from the simulators developed commercially, several MIS simulators have been

developed by research groups. Several arthroscopy simulators have been developed [27][92].

These simulators are similar to those bone surgeries as described previously because they

typically make minimal use of deformable structures and all interactions are via specialised

(keyhole) instruments. Hellier et al. [36][72] have developed a multi-threaded colonoscopy

simulation framework that provides robust deformation simulation of the colon with high

visual fidelity and a specially built haptic interface that enables the user to manipulate a

real endoscope with tactile feedback. Their work provides an excellent solution for cavity

simulators. However, surgical simulators and VR medical simulations more generally cannot

be developed using this framework without additional technology. Harders et al. [8][32]

have developed an impressive hysteroscopy simulator that renders the uterine cavity with

high visual fidelity and allows the user to cut deformable polyps and myomas. Ablation is

also supported. Their approach to surgical cutting is optimized for their specific domain and

is relatively complex, requiring further work before arbitrary cut paths in 3D are supported.

2.2 Simulation Frameworks

The development of medical VR simulators is complex and combines numerous technolo-

gies and techniques. Unlike previously reviewed VR medical simulators that tend to be

constructed independently of any universally accepted systematic framework, there have

been some attempts to provide open-source standardization. This section provides an

overview of the most significant simulation frameworks available for VR medical simulation

development. These frameworks combine some or all of other third-party APIs into a single,

unified API.
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In recent years, there have been a number of attempts at designing software frameworks

to facilitate the development of medical simulation. Examples include CAML [13], ISReal

[40], NeuroVR [67], Spring [51], and AlaDyn-3D [39]. Some of these early frameworks

only provided conceptual architecture for the integration of medical simulation components,

but no implementation issues or technical considerations were addressed. Some of them have

capabilities of simulating dymanic models, however, the underlying models are woven into

the specifications of the overall frameworks developed, with a limited choice of algorithms

for physical modeling, time integration and collision detection.

Later, an open architecture framework, GiPSi (General Physical Simulation Interface),

was developed for organ-level surgical simulation [28]. Unlike earlier dynamic modeling

frameworks, the APIs in GiPSi were designed to be independent of the specifics of the

implemented modeling methods. This allows GiPSi to integrate heterogeneous models

and processes and enforce time-dependent spatial relationships among them. It integrates

open source libraries, such as TAO, OPCODE, and OpenHaptics, to facilitate development

of simulation components for medical simulation with haptic feedback. However, this

framework no longer appears to be active and it does not include any re-usable components

for tissue simulation.

More recently, another open source framework called SOFA (Simulation Open Frame-

work Architecture) [21] was developed to primarily target at real-time simulation, with an

emphasis on medical simulation. Although their aim is identical to previous frameworks,

they propose a different approach, through a very modular and flexible software framework

that allows independently developed algorithms to interact together within a common simu-

lation. Different types of deformable models are supported based on traditional force-based

modeling methods, such as mass-springs, linear and co-rotational finite element method

(FEM), and fluid models along with a large array of collision detection and resolution

algorithms are provided. Although SOFA has a lot to offer, it requires developers to conform

or adapt to its architecture.
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A more advanced open-source toolkit called iMSTK [42] was released recently for rapid

prototyping of interactive simulation applications. iMSTK provides an easy to use framework

that can be extended and interfaced with other third-party libraries for the development of

medical simulators without restrictive licenses. Besides traditional force-based physical

modeling methods, iMSTK has included PBD [54], which has gained great popularity in

recent years for simulating large deformation tissues with high efficiency, stability, and

real-time performance. In addition, the input/output module for visualization and haptics

supports over 30 devices, including various haptic devices and VR HMD. However, this

software was only available two years after our simulation framework was developed in

early 2019.

In summary, the number of VR medical simulations is growing. While graphical realism

is high, realistic interactive tissues and haptic feedback remain a key challenge. Although

our aim is similar to some of the previous work, our framework enables the rapid and

efficient development of medical VR simulators that integrates PBD for real-time simulation

of heterogeneous human body constituents, including bones, soft tissues, and fluids, in a

unified solver instead of a collage of specialized solvers for different object types in previous

frameworks. Our framework not only provides realistic simulation of the procedure that

allows full interactions with realistic haptic feedback, but also offers important components

for training and skill assessment. Unlike most simulators only focusing on training of

basic skills with little variations, our system supports input of realistic patient-specific

profiles from many sources with different pathologies that can parametrically adjust features

to cover a wide variation of difficulty levels. More importantly, due to various unsolved

technical issues, current simulation systems are not able to capture precise motion data

since they cannot simulate the entire procedure in a realistic manner. In contrast, our

framework provides the components required for automated assessment that captures all

motions and gives a complete visualization of the procedure for real-time guidance and

post-trial assessment, which are not available in current medical simulation frameworks.
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Chapter 3: Physics-based VR Simulation Framework

Many medical simulations involve the computation of visual feedback, haptic feedback

and interactions between medical instruments and anatomical structures (such as probing,

grasping, cutting, cauterizing, etc.). This typically translates into a simulation loop where, at

each time step, collisions between objects are detected, deformation and collision resolution

are computed, and the resulting state can be visually and haptically rendered (Figure 3.1).

By observing the commonalities in these procedures, our proposed system is designed to

suit many different medical procedures, and thus, allows easy transition from one class of

procedures to another class of procedures.

The proposed system will be a general simulation framework with a broad base of

technological features and an emphasis on real-time simulation and automated assessment.

This will offer a highly novel flexible platform for the quick and efficient development of

new medical simulators. It will allow for the input of patient-specific anatomy acquired from

computed tomography (CT)/magnetic resonance imaging (MRI) scans. It will perform soft-

tissue modeling, rigid-body dynamics, and fluid interaction and interfaces to many different

interaction devices. Our system embeds independent dynamics models and interaction

devices in separate modules while allowing them to interact with each other within the same

environment, thereby minimizing the efforts required for development.

3.1 Architecture

The overall system architecture of the proposed framework is provided in Figure 3.2. It

consists of a main simulation engine, an object representation structure (object class), an

abstraction of I/O devices (sensor class), and an automated assessment component, in which

includes the automated visualization and scoring implemented for medical simulation.
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Figure 3.1: Illustration of the simulation loop.

3.2 Main Program

The main simulation program acts as the central core, which contains the main thread(s)

of control, simulation functions, collision detection/resolution methods, data structures,

and interface routines. Its tasks include the management of the dynamics of objects (de-

formable, rigid bodies, and fluids), coordination of their interactions, and arbitration of the

communication between components.

3.3 Anatomy Acquisition

Our simulation system supports input of patient-specific anatomy from many sources

including serial-section, volumetric (CT/MR scans), or surface scans segmented using any

segmentation tools, followed by mesh generation and simplification. Once the geometry

is created using these tools, it can be loaded into the system and various attributes can be

specified. Each object comprises arrays of geometry attributes (including vertices, edges,

faces, and/or tetrahedral elements), graphical attributes (such as textures, material properties,

etc), simulation properties (such as dynamics, numerical method, constraints, etc), collision

detection and resolution attributes (such as detection method, faces to consider, collision

filter, etc), and other attributes. Note that, for a particular object, it may not contain all of

the above geometry attributes. Fluids, such as blood, mouth secretions, are represented as
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Figure 3.2: The overview of the proposed architecture.

an object consisting only of nodes. A suture/thread is modeled as an object with only nodes

and edges. Most objects (such as organs, medical instruments) can be modeled with nodes,

edges, and faces, while tetrahedrons are only required for some forms of cutting or volume

preservation.

3.4 Object Representation

In our system, each simulated object can have several representations linked together through

skinning (Figure 3.3). In this multi-model representation, each object is decomposed into

various representations where each representation is more suited toward a particular task -

modeling, collision detection and visualization. This multi-model representation permits,

for instance, switching from one modeling or collision detection method to another, without

affecting other components and allows new models to be integrated efficiently. These

representations are linked together so they can be coherently updated. In this way, objects in

different simulation layers are able to communicate with each other.
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Figure 3.3: Illustration of the multi-model representation for a patient model. Notice how
the visual model is more detailed than the collision model and how the behavior model
relies on a very different representation. The behavior model controls the update of the other
representations through skinning.

3.5 Sensors

The simulator interfaces with many different interaction devices through the sensor class. A

sensor is an abstraction of a 6 degree-of-freedom (DOF) tracking and/or haptic device. It

contains a position in 3D space, along with orientation information (rotation matrix) and

includes an array of activation values to store information from any buttons associated with

the device. The activation values can be used to specify hinge angles (e.g., to control how

opened or closed the scissors are) or telescoping/plunger depth (for a syringe or resectoscope

handle) for the object’s subparts.

Medical instruments are simulated as kinematic objects in the virtual scene, whose poses

are driven by the tracking sensors. We have created various instruments for different medical

procedures and have functionally classified them into a number of different categories,

including single pieced (e.g., laryngoscope, scalpel, cautery hook, needle tip cautery, probe)

and hinged (forceps, endoscopic scissors, graspers) tools, based on the measurements of

real instruments. New instruments can be added as new procedures are simulated.

Each sensor also contains a transformation matrix that is used by the calibration module

to register each sensor to the world space. In our system, a sensor can be linked to a particular
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object (typically a virtual instrument) through either direct coupling or virtual coupling

with a 6-DOF damped spring. When the sensor pose is updated, the virtual instrument is

transformed by the sensor data. HMDs are also supported in our system. By attaching

the viewing location to the HMD, the virtual environment can be rendered from the user’s

viewpoint, which allows the user to perform the procedure from any viewpoint they want

just as in real situation instead of a fixed view as in screen-based computer simulators.

Moreover, by attaching the viewing location to a sensor linked to a virtual instrument, we

can easily obtain an endoscopic view from any given instrument.

3.6 Simulation Core

The simulation core contains modeling tools and processes the dynamics of each object

(deformable, rigid-body, or fluids) at every simulation timestep. Our framework includes

simulation of all human body constituents, such as bones, soft tissues and fluids (e.g., blood,

secretions) using PBD [54]. In previous simulation frameworks, visual effects are made

using a combination of elements created using specialized solvers for rigid bodies, fluids,

clothing, etc. However, in our framework, all object types are simulated using a unified

particle representation based on PBD, which enables new effects where different simulated

substances can interact with each other seamlessly. This allows for efficient modeling of

large soft tissues with many different material properties in real time. PBD’s strength lies

in enabling visually plausible effects that enhance the visual experience. It is not designed

to build medical simulation affecting physics–for example, it lacks functionality such as

contact callbacks, scene queries (ray-casting, overlap test, etc.), joints, serialization, etc.

For this reason, we also integrated a rigid-body dynamics model into our framework [58].

Benefiting from our multi-model representation, objects in PBD are able to communicate

with objects in the rigid-body dynamics.

In PBD, each object is comprised of arrays of N particles (each consisting of positions,

velocities and masses) and M constraints that describe the object. Particles are generated by
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performing uniform voxelization of the surface mesh of the object and placing particles at

each occupied voxel interior to the mesh. To simulate surgical cutting, a tetrahedral mesh of

the object is generated, and particles are placed at vertices of each tetrahedron. Deformations

are simulated by adding shape-matching constraints [55], stretching constraints [38], bending

constraints [45], torsion constraints [45], or density constraints [47] (for simulation of fluids)

within each object.

3.7 Collision Detection and Resolution

In PBD, collisions are solved by adding additional collision constraints to the particles. One

advantage of the position-based approach is how simply collision detection and resolution

can be realized since all dynamics in one scene are represented as particles with a single

collision radius. Two types of collisions are handled in PBD: particle-to-particle collision

and particle-to-mesh collision. Meshes are used to represent all kinematic/static objects,

including plane, sphere, box, capsule, convex mesh, triangle mesh and SDF. At each time

step, a set of Mcoll collision constraints are generated from scratch. While the first set

of M constraints given by the object representation are fixed throughout the simulation,

the number of collision constraints Mcoll varies and depends on the number of colliding

particles.

The virtual model of each instrument is represented as kinematic object and approxi-

mated with simple collision shapes, such as capsules or convex meshes, for fast collision

detection against particles. We enclose each instrument within one or multiple collision

shapes. The sensor device provides the input position and orientation for the graphical

model of the instrument and its collision shapes, which allows the user to interact with

various instruments in the virtual scene.

Various tool-tissue interactions can be simulated easily within the PBD simulation layer.

A probing interaction induces an instantaneous displacement of the particles to resolve the

collision. A grasping interaction attracts the particles on the object that are in contact with
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the instrument tip with the rest of the particles deformed according to the constraints between

them. Cutting interaction is implemented by dividing the corresponding tetrahedrons at

the location of contact and inserting new particles and edges. A cauterizing interaction is

triggered when the instrument is in contact with the tissue, and color of the mesh faces

in contact is changed progressively. Blended textures can also be used to achieve desired

graphical results (e.g., smoke). In each of the above cases, the collision detection and

resolution algorithm processes each of the collision pair list, performs their interaction

function, and the contact information is sent to the haptic thread to compute the resulting

haptic force of that interaction upon the instrument and to the automated visualization

component for the computation of various visual feedback tools.

Since the instrument under interaction is kinematic and free from physics in the virtual

world, external forces from gravity or collisions will no longer have any effect on it because

the position is set absolutely by the user. The held instrument could still apply forces to

dynamic objects that are free to move, but if it pushes a dynamic object against a static

object (such as the tissue attached to the bones), the held instrument would easily penetrate

the tissue. Moreover, there is no interaction or collision between the held instrument and

static objects, such as the bones. Therefore, we need the rigid-body dynamics model as an

additional simulation layer in parallel to the PBD layer to account for the collisions for rigid

objects.

In the rigid-body simulation layer, we create the same collision shape representations

for the instrument as that in the PBD layer. We also create the collsion shapes for those

static objects (such as the bones) in the rigid-body dynamics layer. Like the PBD layer, the

kinematic instrument in the rigid-body simulation layer has no interaction or collision with

static objects. Therefore, we employed a virtual coupling scheme by creating a dynamic

proxy instrument and constraining it to the kinematic instrument. While the kinematic

instrument can penetrate a collision shape, the proxy instrument will respond to collisions

and remain on the outside of the volume of the shape. In each simulation cycle, the rigid-

21



www.manaraa.com

body dynamics layer fetches the cluster positions of objects from the PBD layer to update

its collision shapes through skinning. Conversely, the PBD layer receives the last non-

colliding position of the instrument from the rigid-body dynamics layer to update the poses

of the collision shapes of the tool. The implementation details of collision handling will be

introduced in Chapter 5 with the ETI simulation.

3.8 Haptic Rendering

In order to create a realistic VR simulation, visual feedback is extremely important. Equally

important in bringing a real immersive experience is to integrate haptics into the simulation.

Just as a computer display requires algorithms and rendering techniques to deliver visual

realism, haptic devices also require the development of specialized algorithms to deliver

the same levels of realism to our sense of touch. Haptics is the use of force to recreate a

touch sensation. It can be used to give a user the perception that they are interacting with

real objects that are in fact virtual. A haptic device is one that can receive inputs from a

user as to how they would like to interact with a virtual environment and can provide a

force to the user as an output. The simulated force applied to the haptic device must be

updated at a high rate of about 1kHz to maintain a realistic haptic feedback. However,

the computational process of the collision detection, deformable models and the complex

physical simulation are so time consuming that the required update rate of haptic force

cannot be guaranteed. Therefore, we implemented a multi-thread haptic rendering process to

separate the haptic thread from the physical thread. Our haptic rendering algorithm utilizes

different mechanisms for computing the force due to contact with rigid bodies (Figure 3.4)

and with soft tissues (Figure 3.5).

3.8.1 Force Feedback with Rigid Body

In order to enhance the stability of the haptic system, we employed the virtual coupling

scheme instead of the direct coupling scheme for force calculation with rigid bodies in
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Figure 3.4: Calculation of rigid body force feedback.

the scene. The general structure of virtual coupling is shown in Figure 3.4. The virtual

instrument is attached to the haptic interface through a virtual spring and virtual damper in

mechanical parallels. The haptic device controls the position and orientation of its virtual

counterpart. The spring’s displacement generate forces on the dynamic virtual instrument

and an opposite force on the haptic device. Mass properties are assigned to the virtual

instrument which can be felt through the user’s hand. The force is computed as follows:

frigid = ks(pproxy−pHIP)− kd(vproxy−vHIP), (3.1)

where ks and kd are spring stiffness and damping stiffness, pproxy and pHIP are the positions

of the virtual instrument and the haptic device. vproxy and vHIP are the velocities of the

virtual instrument and the haptic device.

3.8.2 Force Feedback with Soft Body

For the force feedback from the interaction with soft tissues, collision tests between the

virtual instrument and the particles are computed in parallel in the haptic thread. We calculate

the force as the average of all vectors pointing from the current positions of the particles

pi (in contact with the virtual instrument) to their rest positions p0
i (Figure 3.5), which are

backed up at the initialization of the simulation. We calculate an average vector for each

type of tissue that is in contact with the virtual instrument and multiplied each vector by a

23



www.manaraa.com

Figure 3.5: Calculation of soft tissue force feedback.

constant factor µ (stiffness of each tissue type):

fso f t = µ
∑i(p0

i −pi)

N
, (3.2)

We then average all those vectors from each type of tissue to generate the force feedback

from soft tissues.

Finally, the summation of the interaction forces due to the contact with the rigid bodies

and soft bodies is sent to the haptic device to calculate the overall force vector that will be

realized upon the virtual instrument.

3.9 Automated Assessment

Traditionally, performance assessments require experts to review and rate individual ex-

aminee performance on patients or simulators, which is subjective, highly variable and

resource-intensive. Moreover, current simulators do not provide complete 3D information

concerning the relationship of the instrument with the simulated patient or quantitative

feedback regarding the quality of an attempt. As a results, learners have poor knowledge

about what went wrong and how to improve. And poor visualization during the procedure

prevents instructors from observing the events that are occluded from instrutor’s viewpoint,

which introduces an additional source of error into the assessment.

These limitations have driven efforts to develop automated assessment systems for
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the quality of performance, which is essential in acquiring precise data, setting objective

standards, and quantifying the performance. There have been some attempts at capturing the

motions of the instruments and limited fiducial points on manikins/patients and/or measuring

the forces imparted on specific parts of the manikins/patients using various tracking or

force sensors [11][15][16][26][64][85]. Although these efforts provide some additional

information about trainees’ performance, they do not provide the complete picture of the

interaction of the instruments within the manikin. Moreover, these works only included

preliminary analysis on differentiating subjects with different skill levels, but no automated

assessment method was developed for skill classification or score prediction on subjects’

performances. Capturing the complete motion is difficult without a virtual representation of

all the components. Various computer-based simulators have been developed for training

medical professionals as reviewed in Chapter 2. However, since the virtual models are not

physically simulated, and collisions between different object types are not implemented,

their systems are not capable of capturing the entire motions of the instruments with respect

to the internal geometric change of the virtual model. Therefore, they suffer from the same

issues as the above manikin-based simulators by not providing a complete picture of the

entire procedure.

With respect to automated skill assessment, a few of works have been using hidden

Markov model [79][91] or convolutional neural network [84] to classify surgical skills

and/or predict performance score of a surgery. However, all these machine learning methods

lack interpretable result, which can be given as feedback that is understandable and intuitive

in helping trainees reach higher skill levels. In order to make the assessment model more

interpretable, some works have been using fully convolutional neural networks [22][23],

regression models [20][91], or multilevel models [33] to predict the overall score of surgical

performances.

In contrast, our simulation framework is capable of simulating all the components

involved in a procedure in a realistic manner and therefore, is able to capture the entire 3D

25



www.manaraa.com

motions of instruments in relation to the internal geometric change of the virtual patient. Our

automated visualization tools provide a complete visualization of the procedure, offering

trainees and instructors with comprehensive information for real-time guidance and post-trial

assessment. By using the performance parameters extracted from the motions and the scores

rated by experts, a multinomial regression model is developed to automatically assess the

trainees’ performances.

3.9.1 Automated Visualization

With the virtual representations of all the components involved in a procedure, we can

visualize an even larger set of performance parameters in relation to the geometric change

of the virtual model than those physical simulators during the entire procedure. Our system

captures the entire motions in 3D allowing for real-time and post-trial viewing, visualization

from different angles including cross-sectional and/or laryngoscopic/endoscopic views and

measurements on the virtual model to provide detailed visual feedback and analysis of

multiple aspects of a procedure. Our visualization tools not only provide trainees with

real-time feedback throughout the entire procedure, but also provide instructors with a clear

understanding of what is happening during each step of a procedure, which is impossible in

a physical simulator.

From the raw motion sequences, the simulation system can extract various performance

parameters (such as the 3D trajectory of the tip of the instrument, color-coded force applied

on the virtual patient model, line of sight with the name of the anatomical structure that

the subject is looking at, etc.) that are chosen a priori based on the qualities that the

expert instructor deems as important features for a certain procedure. All these visualization

features can be implemented based on the contact information and scene query (raycasting,

overlap, etc.) results returned from the rigid-body dynamics simulation layer and can be

rendered on the final visual models as additional information to guide the trainee throughout

the entire procedure and offer instructors with comprehensive visualization for accurate
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Figure 3.6: Pipeline of our proposed automated assessment algorithm.

assessment.

3.9.2 Automated Scoring

In addition, all the extracted performance parameters can also be fed into our automated

scoring system, which automatically assess trainee’s performances using an interpretable

machine learning algorithm. These performance parameters help further characterize sub-

jects’ performances and reflect the qualities of motion that are subtle and difficult to quantify

by merely looking at the motion playback. The choice of parameters selected will affect

the automated scoring system. A multinomial regression model is developed by using the

extracted performance parameters as input features and the scores assigned by the rater as

input labels. Our automated scoring model offers interpretable results and gives a consistent

and complete evaluation of trainee’s performance, which would obviate the need to have

an instructor present to rate each trial and would be more objective and less variable. The

process of finding the optimal model is illustrated in Figure 5.2.

With all the performance parameters (features), we first select those ones which have

statistically significant marginal associations with the score on a n-point scale. We fit
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multinomial regression models for each feature with the overall score as follows:

log
(

P(Score≤ j)
1−P(Score≤ j)

)
= β0 j +β1F, (3.3)

where β0 j, j = 1,2, ...,n−1 are the category-specific intercepts and β1 is the coefficient of

feature F . Each model is fitted by using the multinomial generalized estimating equation

method (GEE) to account for the repeated measures [82]. A feature is considered marginally

significant if the multinomial regression model against this feature has a P-value ≤ 0.05. In

addition, for those marginally significant features, if any two of them are highly correlated

(e.g., correlations > 0.8), we exclude one of them from the subsequent steps to prevent

collinearity.

As it is difficult to build a robust regression model for a complex scoring rubric with

only linear terms, we evaluate the discontinuous breakpoints of the selected features from

the previous step to extract both piecewise linear terms and interaction terms as part of the

candidate set. Thus, we construct a classification tree for the overall score with the selected

features [80]. The classification tree can hierarchically identify predictive features and their

discontinuous breakpoints. We use the Gini index as the splitting metric which is a measure

of node purity. The optimal breakpoints are those with maximal impurity reduction in each

level. The closer to the root, the more predictive the feature is. We consider these features

within four layers from the root of the tree as the most predictive ones. The correlation

between multiple trials performed by the same subject are ignored when constructing the

classification tree. This drawback will be addressed in the next step.

The candidate model set is determined by the forward selection algorithm (see Algorithm

1) using the candidate term set acquired from above, which contains three categories of terms:

linear terms (the marginally significant features which did not appear in the classification

tree), piecewise linear terms (the predictive features in the classification tree), and their

two-way interaction terms. We first define a candidate model set S for choosing the optimal

model in the algorithm and initialize it as empty. We then define a reference model r for the

28



www.manaraa.com

Algorithm 1 Forward selection
1: Initialize the candidate model set as S = /0 and enumerate all the m terms in the candiate

term set
2: Initialize the reference model r = 1
3: loop
4: for each i = 0,1, ...,m−1 do
5: ci = r+one additional term
6: pi =WaldTest(ci,r)
7: end for
8: Consider all possible ci models and determine the one c′ that has the minimum

P-value p′ of the Wald test
9: if p′ > 0.05; or numerical errors occur then

10: break;
11: end if
12: S = S∪ c′

13: r = c′

14: end loop
15: for each si ∈ S do
16: Compute the classification accuracy of each model with LOOCV
17: end for
18: Return the optimal model with the highest classification accuracy

forward selection in each iteration. It is initialized to a null model that only contains the

intercept term. In each iteration, we add one additional term to the reference model r as the

current model ci and compared the P-values by the Wald test between r and all possible ci

models. Each model is fitted by the multinomial GEE method to account for the repeated

measures. We select the model c′ with the minimum P-value in the Wald test as the new

reference model: r = c′. We then update the candidate model set: S = S∪ r. We repeat the

above steps until the minimum P-value at one iteration is > 0.05 or numerical errors occur

from Wald test.

Lastly, with the candidate model set S, we find the optimal model that has the highest

classification accuracy by performing leave-one-out-cross-validation (LOOCV). Due to the

nature of cross-validation and repeated trials from each subject, we take one subject out as

the test data for cross-validation [66].
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Chapter 4: Position-based Simulation

4.1 Background

The simulation of deformable objects has been an active research topic in computer graphics

over the past decades. Traditional force-based dynamics, including FEM, mass-spring sys-

tems, meshless methods and particle systems, have been widely used. A few comprehensive

reviews of such approaches can be found in [5][56]. These force-based approaches model

deformable objects through the manipulation of internal and external forces, which are

transformed into accelerations, using Newton’s second law of motion. The positions of

elements that comprise an object are then determined through numerical integration of the

derived accelerations, which usually cause overshooting under large time steps (Figure 4.1).

These force-based approaches can provide an accurate computation model for elastic objects

of different material properties but require high computational cost. Therefore, simulating

the entire medical procedure using force-based methods is not practical.

PBD [54] has gained great popularity recently due to its simplicity, high efficiency,

unconditional stability and real-time performance. In contrast to force-based methods that

achieve equilibrium configurations through the integration of accelerations, PBD approach

directly projects positions as a solution to a set of geometrical constraints, which eliminates

the overshooting problem in force-based methods and simplifies the implementation process

(Figure 4.1). Although PBD is not as accurate as force-based methods, its efficiency

and controllability far outperform those methods in simulating medical procedures while

providing visually plausible results [10]. The PBD approach has already been successfully

applied in the medical field. Kubiak et al. [45] developed a real-time surgical thread

simulator for an interactive and robust simulation of knot tying. Qian et al. [63] developed a

laparoscopic surgery simulation that can simulate complex anatomic structures composed

of soft tissues with different properties. Berndt et al. [7] implemented an efficient surgical
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Figure 4.1: Comparison of force based update and position-based update.

cutting method for soft tissues of human body. Heredia-Pérez et al. [37] developed a

robotic surgery simulation for resection of pituitary tumours in the brain. However, all those

simulators only use the PBD to simulate deformable objects, such as organs and surgical

threads, there is no modeling of heterogeneous scenes, such as rigids and fluids, and their

interactions. In contrast, our framework integrates the modeling of all the heterogeneous

object types using PBD for medical simulation. In this chapter, we will introduce the

alogorithm of PBD and some common constraint examples to model rigid, soft, fluid, and

cloth objects in a unified particle representation . The implementation details of integrating

the simulation of heterogeneous objects types will be described in Chapter 5.

4.2 Particle Representation

The objects to be simulated are represented by a set of N particles and M constraints that

describe the objects. Each particle i ∈ [1, ...,N] has three attributes, namely position xi,

velocity vi and mass mi. Aside from these attributes, each particle has a phase identifier that

organizes particles into groups and controls how they behave and collide with other groups

of particles. Each object is represented by a group of particles that have the same phase

value, which acts as a collision filter used for collision detection against other groups of
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particles. Each constraint j ∈ [1, ...,M] is defined by the following five attributes:

• a cardinality n j;

• a function C j: R3n j → R;

• set of indices i1, ..., in j , ik ∈ [1, ...,N];

• a stiffness parameter k j ∈ [0, ...,1] and

• a type of either equality or inequality.

Constraint j with type equality is satisfied if C j(xi1, ...,xin j
) = 0. Otherwise its type is

inequality if C j(xi1, ...,xin j
) ≥ 0. The stiffness parameter k j defines the strength of the

constraint.

The algorithm of PBD simulation is described in Algorithm 2. Given the above data and

a time step ∆t, the positions and the velocities of the particles are firstly specified in lines

(1)-(3) before the simulation loop starts. Lines (5)-(6) perform a simple explicit forward

Euler integration step on the velocities and the positions. The new locations pi are not

assigned to the positions xi directly but are only used as predictions. Non-permanent external

constraints such as collision constraints are generated at each time step from scratch in line

(7) by using both the original and the predicted positions in order to perform continuous

collision detection. Lines (8)-(10) then iteratively corrects the predicted positions such

that they satisfy the M internal constraints and the Mcoll external constraints. Finally, the

corrected positions pi are used to update the positions and the velocities of the particles.

4.3 Constraint Projection

The goal of the solver is to correct the predicted positions pi of the particles such that they

satisfy all the constraints (Lines (8)-(10)). The most important issue in connection with

moving points directly inside a simulation loop is the conservation of linear and angular
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Algorithm 2 Algorithm of PBD
1: for all vertices i do
2: initialize xi = x0

i ,vi = v0
i ,wi = 1 = mi

3: end for
4: loop
5: for all vertices i do vi← vi +∆twifext(xi)
6: end for
7: for all vertices i do pi← xi +∆tvi
8: end for
9: for all vertices i do generateCollisionConstraints(xi→ pi)

10: end for
11: loop solverIterations times
12: projectConstraints(C1, ...,CM+Mcoll ,p1, ...,pN)
13: end loop
14: for all vertices i do
15: vi← (pi−xi)/∆t
16: xi← pi
17: end for
18: velocityUpdate(v1, ...,vN)
19: end loop

momenta. Let ∆pi be the displacement of vertex i by the projection. Linear momentum is

conserved if

∑
i

mi∆pi = 0, (4.1)

which amounts to conserving the center of mass. Angular momentum is conserved if

∑
i

ri×mi∆pi = 0, (4.2)

where the ri are the distance vectors of the pi to an arbitrary common rotation center. If a

projection violates one of these constraints it introduces so called ghost forces which act like

external forces dragging and rotating the object. However, only internal constraints need

to conserve the momenta. Collision or attachment constraints are allowed to have global

effects on the object.

Let p be the concatenation [pT
i1, ...,p

T
in j
]T and let each constraint function C j, j ∈

[1, . . . ,M] take the concatenated vector p as input. For internal constraints, C is inde-
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pendent of rigid body modes, i.e. translation and rotation. This means that rotating or

translating the points does not change the value of the constraint function. Therefore, the

gradient ∇pC is perpendicular to rigid body modes because it is the direction of maximal

change. If the correction ∆p is chosen to be along ∇pC both momenta are automatically

conserved. PBD solves a system of non-linear equality and inequality constraints such that

C1(p)� 0

...

C j(p)� 0,

where the symbol � denotes either = or ≥. Constraints are solved using the Gauss-Seidel

method. For each iteration, constraints are solved sequentially through a linearization in the

neighborhood of the current solution C(p) using first-order Taylor polynomial:

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0. (4.3)

The position displacement ∆p is restricted to be in the direction of ∇pC, which conserves

the linear and angular momenta. This means that only one scalar λ - a Lagrange multiplier -

has to be found such that the correction

∆p = λ∇pC(p) (4.4)

solves Equation 4.3. This yields the following formula for ∆p:

∆p =− C(p)
|∇pC(p)|2

∇pC(p). (4.5)

For the correction of a single particle pi, we have

∆pi =−swi∇piC(p), (4.6)
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where the scaling factor

s =
C(p)

∑ j w j|∇pC(p)|2
(4.7)

is the same for all particles and weight wi = 1/mi. In this case a particle with infinite mass,

e.g., wi = 0, will not be moved. After each constraint has been solved, positions are updated.

After a specified number of iterations, the change in velocity is determined by the total

constraint displacement

∆v =
∆p
∆t

, (4.8)

Inequality constraints are handled trivially by first checking whether C(p)≥ 0. If this is the

case, the constraint is simply skipped.

4.4 The Non-Linear Gauss–Seidel Solver

The input to the solver are the M and Mcoll constraints, and the estimates p1, ...,pN for the

prediction locations of the particles. The solver tries to modify the estimates such that they

satisfy all the constraints. The resulting system of equations is non-linear. In addition, the

constraints of type inequality yield inequalities. The non-linear Gauss-Seidel (GS) method is

used to solve such a general set of equations and inequalities. The original GS algorithm can

only handle linear system. However, solving a constraint in PBD is a non-linear operation.

We repeatedly iterate through all the constraints and project the particles to valid locations

with respect to the given constraint alone. In contrast to a Jacobi-type iteration, modifications

to point locations immediately become visible to the process, which speeds up convergence

significantly. In over-constrained situations, the process can lead to oscillations if the order

is not kept constant.

4.5 Specific Constraints

In the following, we will introduce some common constraint examples used in medical

simulations to model rigid, soft, fluid, or cloth-type objects.
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4.5.1 Spring Constraints

Spring constraints are specified as pairs of particles with a rest-length spring and a user-

specified stiffness coefficient that defines the strength of the constraint in a range from 0.0 to

1.0 (Figure 4.2). They are not a spring in the classical sense, but rather a distance constraint:

C(p1,p2) = |p1−p2|−d, (4.9)

where d is the rest length between the two particles. The derivatives with respect to the

points are:

∇p1C(p1−p2) = n, (4.10)

∇p2C(p1−p2) =−n, (4.11)

with

n =
p1−p2
|p1−p2|

. (4.12)

The scaling factor s is:

s =
|p1−p2|−d

w1 +w2
(4.13)

and the final corrections are:

∆p1 =−
w1

w1 +w2
(|p1−p2|−d)

p1−p2
|p1−p2|

(4.14)

∆p2 =
w2

w1 +w2
(|p1−p2|−d)

p1−p2
|p1−p2|

(4.15)

The spring constraints can be used to simulate soft tissues if the object is represented as

tetrahedron mesh. Springs can be placed at all the edges of the mesh. It can also be used as

external constraints by attaching one object to another, for example, to attach the tongue to

the mouth, or to attach the soft tissue to the bone.
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Figure 4.2: Spring constraint.

4.5.2 Bending Constraints

In membrane or cloth simulation, it is important to simulate bending in addition to stretching

resistance (spring constraint). As shown in Figure 4.3, for each pair of adjacent triangles

(p1,p3,p2) and (p1,p2,p4) a bilateral bending constraint is added with constraint function:

Cbend(p1,p2,p3,p4) = acos(
(p2−p1)× (p3−p1)

|(p2−p1)× (p3−p1)|
· (p2−p1)× (p4−p1)

|(p2−p1)× (p4−p1)|
)−φ0

(4.16)

and a user-specified stiffness coefficient which defines the bending stiffness of the constraint.

The scalar φ0 is the initial dihedral angle between the two triangles. The advantage of

this bending term over adding a spring constraint between points p3 and p4 is that it is

independent of stretching. This is because the term is independent of edge lengths.

4.5.3 Shape Matching Constraints

In PBD, deformable objects can be simulated by adding geometrically motivated shape-

matching constraints [55]. This method is based on finding the least square optimal rigid

transformation in 3D between two sets of points with a priori known correspondence. The

algorithm requires a set of particles with masses mi and their respective initial positions p0
i

as input. At each time step, the original shape p0
i is matched to the deformed shape pi. Then,

the deformed points pi are forced towards the goal positions gi. Given two sets of points p0
i

and pi, the minimization problem is given by
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Figure 4.3: Bending constraint.

∑
i

mi(R(p0
i − t0)+ t−pi)

2, (4.17)

where mi are the masses of individual particles, R is the rotation matrix, t and t0 are the

translation vectors given by the center of mass of the initial shape p̄0 and the deformed

shape p̄ respectively. Once the optimal rotation R and translation vector t are derived, the

goal positions can be computed as

gi = R(p0
i − p̄0)+ p̄. (4.18)

From the goal positions, an integration scheme can be defined

vi(t +∆t) = vi(t)+α
gi(t)−pi(t)

∆t
+

∆tfext(t)
mi

, (4.19)

pi(t +∆t) = pi(t)+∆tvi(t +∆t), (4.20)

where α ∈ [0,1] is a user defined stiffness parameter which defines how far the particles are

pulled toward their goal positions.

4.5.4 Cluster-based Shape Matching Constraints

The implementation of the algorithm described above allows only for small deformations

from the initial shape. For larger deformations, e.g., to model soft tissue, the concept

of cluster-based shape matching method [55][19][68] can be integrated. The idea is to
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Figure 4.4: Shape matching constraint. The initial shape with the vertex positions xi is
matched to the deformed configuration xi to obtain goal positions gi. The deformed shape is
pulled towards these goal positions to simulate elastic behavior.

Figure 4.5: Cluster-based shape matching constraint. The stiffness of the model depends on
the region size. Smaller regions (top) allow larger deformations than larger regions (bottom).
The hexagons in the left images represent the overlapping regions of the model. The right
images show the goal positions after one particle is displaced away.

divide the set of particles that comprise an object into multiple overlapping clusters (shape-

matching constraints). Every cluster has its own position and rotation, which serve as “joint”

for the object. Every particle is connected to one or more clusters with a weight between

0 and 1, which defines how much a cluster influences the transform of a particle. After

performing shape matching for all clusters, we get multiple goal positions for each particle.

The final goal position for a particle is determined by blending the goal positions of the ni

corresponding clusters ci ∈C

gi =
∑ci∈C Rci(p0

i − p̄0
ci
)+ p̄ci

|ni|
. (4.21)
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4.5.5 Density Constraints

It is also possible to simulate fluids in the PBD framework even though it has been widely

used for the simulation of deformable objects. Fluids can be simulated by adding some

specialized constraints. A straightforward approach would be to model the fluid as a system

of particles constrained to maintain a minimum distance from each other, however this leads

to granular-like behaviour and will typically fail to reach hydrostatic equilibrium when

coming to rest. An alternative method is presented by Macklin et al. [47]. This method uses

position-based density constraints to achieve lower compression and better stability than

traditional Smoothed Particle Hydrodynamics (SPH) methods [50]. To enforce constant

density, a constraint function

Ci(p) =
ρi

ρ0
−1≤ 0 (4.22)

is added to each fluid particle i. Each constraint Ci is a function of the particle’s position

and the positions of its neighbors. ρ0 is the rest density and ρi is given by the standard SPH

density estimator:

ρi = ∑
j

m jW (pi−p j,h), (4.23)

where m j are the masses of neighboring particles within the smoothing length radius of

particle i, h is the smoothing length and W is the kernel function.

In order to solve these density constraints using PBD, the derivative of the constraint

function Equation 4.22 with respect to each particle’s position is required. This can be

calculated using the gradient of SPH kernels

∇pkCi =
1
ρ0

{
∑ j ∇pkW (pi−p j,h) if k = i
−∇pkW (pi−p j,h) if k = j

(4.24)

Then, by taking advantage of symmetry in the SPH smoothing kernel W , the corrected

position due to the particle’s own density constraint, and the density constraints of its
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neighbours is given by

∆pi =
1
ρ0

∑
j
(λi +λ j)∇W (pi−p j,h), (4.25)

where λ is the per-constraint scaling factor.

41



www.manaraa.com

Chapter 5: Endotracheal Intubation Simulation

Figure 5.1: (left) Screenshot of the simulation with left-eye view from the HMD, cross-
sectional view and video laryngoscopic view. Enhanced visualization tools, such as the
color-coded force on the upper gums, percentage of glottis opening and laser dot of sight
line, are shown to give real-time visual feedback; (right) a user interacting with the simulator
through the HMD with a haptic device and an EM sensor.

Neonatal ETI is a time-sensitive resuscitation procedure essential for ventilation of

newborns. It requires an unusually high level of skill due to the narrow airways, relatively

large tongue, anterior glottic position and low respiratory reserve of neonates [6]. Given the

difficulty of the procedure and the high rate of complications in this population, effective

training is crucial for achieving positive patient outcomes [24][73][34]. Typical training

procedures include participating in neonatal resuscitation training programs, practicing on

manikin-based simulators and intubating newborns under supervision [3][43]. However,

intubation success rates for pediatric residents are low under current resuscitation training

programs and show little improvement between years 1-3 of residency (23-25% success rate)

[59] [35]. This indicates the inability of current training programs to adequately prepare

trainees for clinical performance in the delivery room and neonatal intensive care unit

(NICU).

The best way to master the ETI skills is to perform as many supervised practice trials
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as possible on patients. However, pediatric residents experience an average of 3 clinical

opportunities to perform ETI during 3 years of residency [17], a number that falls far

short of the 47-57 intubations required for a consistent 90% success rate [44]. Due to

this limitation, ETI training is heavily reliant on physical manikins, which allow learners

to achieve some level of competence prior to clinical exposure. However, practicing on

current commercial airway manikins has not been found to be a substitute for training

on patients [77][46][57][89]. Most of the manikins and simulator-based training typically

provide little variation in anatomy or difficulty level, which are key requirements for

developing expertise, and do not realistically model the look, feel and motions inherent

in real patients. Consequently, learners who train on one manikin with a single airway

model may develop model-specific techniques that may not transfer to patients or even other

manikins [61]. Moreover, the small size of the intubation space in neonatal models prevent

learners from observing the events occurring within the manikin or the patient; learners

have poor knowledge about what went wrong and how to improve. Lastly, assessment

of ETI performance under artificially ideal conditions likely overestimate trainees’ skill

level since they do not mimic the stressors and distractions that are inherent in the real

clinical environment. To master the procedure, it is essential not only to develop the trainee

perception in understanding the overall procedure, but also to require them to perform the

operation tasks in complex scenarios. Thus, there is a pressing need for innovative training

modalities that can bridge the gap left by traditional training and thereby allow rapid skill

acquisition.

VR-based training systems offer an elegant solution to the current need for better

training in the medical field, since realistic and configurable training environments can be

created without any restriction for repetitive practicing. Many VR ETI simulators have

been developed for training medical professionals as reviewed in Section 2.1.2 (Table 5.1);

however, due to the various unsolved technical issues, ETI simulation has not been widely

used. Such issues include modelling complex anatomical structures and large soft tissue
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Table 5.1: Comparisons with current state-of-the-art of VR ETI simulators.

Virtual
Airway
Skills
Trainer [18]

Airway Lab
VR [83]

ETI
Simulator
[87]

AirwayVR
Trainer [65]

Our ETI
Simulator
[88]

Immersive
Environment

X X 7 X X

Simulation of
Entire
Procedure

7 X X X X

Physical
Modeling

Mandible,
Neck

Mandible,
Tube

Tongue Mandible All Object
Types

Collision
Detection

7 Skeleton-
Tube

Tool-
Tongue

Mandible-
Tongue

All Object
Types

Realistic
Haptics

7 7 X 7 X

Levels of
Difficulty

7 7 7 X X

Skill
Assessment

7 7 7 7 X

deformations, handling collisions of frequent tool interactions with large forces and rendering

realistic haptic feedback. A successful ETI simulator should integrate all these required

components in a balanced and efficient manner to achieve both visual and haptic quality at

interactive rates.

In this chapter, we aim to address the notable gaps in previous work by developing

a physics-based VR ETI simulation by using the proposed simulation framework as de-

scribed in Chapter 3. The simulation of ETI captures the most important aspects of the

aforementioned general problems we are trying to address, such as, multiple heteroge-

neous scenes composed of different object types, dynamic and real-time interactions of

the laryngoscope with multiple tissues, intensive collisions due to large interaction forces

and multimodal rendering of the results. The realism of the VR simulator compared to the

current manikin-based simulator is evaluated by conducting a validation study with a group

of neonatologists.
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5.1 Endotracheal Intubation Simulation System

Our VR-based immersive ETI simulation system includes a HTC R© Vive
TM

Pro head-

mounted display (HMD) with one hand controller, a Geomagic R© Touch
TM

X haptic device

(6 DOF, 3 degree of force output) and a trakSTAR
TM

electromagnetic (EM) sensor (6 DOF)

(Figure 5.1). The HMD with combined resolution of 2880×1600 pixels allows the user to

perform the procedure in the virtual environment from any viewpoint just as in real situation

instead of a fixed view as in screen-based computer simulators. The hand controller is

used to adjust various parameters in the VR simulator, such as head elevation, operation

table angle and jaw opening, and to perform oral suction. The haptic device and the EM

sensor allow bimanual interaction with the virtual laryngoscope and the ETT during the

procedure. To further improve the sensation of grasping the laryngoscope and the ETT, 3D

printed laryngoscope handle and ETT connector modeled on measurements of a Miller 1

laryngoscope and a 3.0 mm ETT were attached to the haptic device and the EM sensor

respectively. The motion was captured in 3D allowing for real-time and post-trial viewing,

visualization from different angles (cross-sectional and video laryngoscopic views) (Fig-

ure 5.1) and measurements on the virtual model during the procedure. The motion data

were recorded throughout the entire procedure and streamed to a computer for post-trial

assessment and statistical analysis.

An overview of the architecture is provided in Figure 5.2. It consists of a main simulation

program, an object representation structure (object class) and an abstraction of I/O devices

(sensor class). The main simulation program contains the simulation functions and processes

the dynamics of objects (deformable or rigid-body dynamics) and their communication with

each other. Each object is decomposed into various representations where each representa-

tion is more suited toward a particular task - modeling, collision detection and visualization.

These representations are linked together so they can be updated coherently. In this way,

objects in the PBD layer are able to communicate with objects in the rigid-body dynamics
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Figure 5.2: System architecture showing interaction flow.

layer.

Our framework uses PBD to simulate the behaviour of human body objects, such as

soft tissues, bones and fluids (e.g., blood, secretions), in a unified particle representation,

which allows for seamless modeling of different substances. In parallel, an independent

rigid-body dynamics model was integrated to account for collisions between the virtual

laryngoscope and bones and to prevent the virtual tool from penetrating soft tissues due to

large interaction forces. In addition, it provides functionalities, such as contact callbacks,

geometry queries (raycasting, overlap tests), etc, for developing real-time visualization. The

details of the simulation algorithm (Figure 5.12) will be addressed in the following sections.

5.2 System Calibration

A calibration procedure was performed before the experiment to register each sensor into

the same coordinate system (Figure 5.3). We first calibrated the Vive
TM

system and set its

coordinate system as the global coordinate space. The operation area is set as seated-only.

The two Vive
TM

base stations were mounted on two tripods diagonally, about 3m apart

from each other, facing toward the center of the operating area. Once the Vive
TM

system is

calibrated, we then registered the haptic device into the global coordinate space. Two sets

of corresponding 3D points (at least 3 pairs of points) were collected by waving the haptic
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Figure 5.3: System calibration.

arm and the hand controller, with the haptic interface tip pointing at a known position on

the hand controller. With the acquired 3D point correspondences, the optimal least square

best-fit rigid transformation from the haptic space to the global space was found by the

singular value decomposition algorithm [2]. The minimization problem is given by:

N

∑
i=1
||Rpi + t−qi||2, (5.1)

where pi and qi are sets of 3D points in the haptic space and the global space respectively,

with known correspondences, i = 1, ...,N. R is a 3×3 rotation matrix and t is the translation

vector.

Similarly, we calculated the rigid transformation matrix from the 3D tracking system

space to the global space for the EM sensor. With the system fully calibrated (error under 2

mm), both the 3D printed laryngoscope and ETT were registered to their virtual counterparts

and users had no trouble locating the instruments while they were in the virtual environment.

5.3 Virtual Model Reconstruction

Our virtual simulator was built on a model of CT scans of a real neonatal patient. The stack

of CT images forms a 3D volume that contains the upper body of a neonate (Figure 5.4).

The mouth, jaws, tongue and airway are the anatomical regions that are directly involved
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Figure 5.4: Segmentation results. Windows a, b and d display the image volume in the
orthogonal axial, sagittal and coronal planes respectively. Window c displays the 3D view
of the volume. The color coding highlights different areas of segmentation.

in a neonatal ETI. For simplicity, we segmented the model into three parts: body tissue

(including mouth and airway), tongue and bone (including upper/lower jaws). We separated

the tongue from the body tissue to allow for varying the size of the tongue or changing the

tongue models to simulate different levels of difficulty. In addition, the parameterized model

enables adjustments in many other features including head size, jaw opening and mouth

secretions. We segmented the CT model in ITK-SNAP [90] and exported the resulting

segmentations into surface meshes, which were further smoothed and simplified.

5.4 Position-based Simulation

5.4.1 Rigid Body Simulation

We represented the skeletal structure in our simulation model as rigid bodies using particles

and added a rigid shape-matching constraint [55] to each rigid body to maintain particle

configurations. Particles were generated by first performing uniform voxelization of each

bone mesh and placing particles at each occupied voxel interior to the mesh (Figure 5.2).

We then assigned all particles in each mesh the same phase identifier and added only one

shape-matching constraint to the body so that all the particles are connected to one cluster
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Figure 5.5: Skeletal structure of the model. (left) Original posture; (right) adjusted posture
with head elevated and jaw opened. The oral, laryngeal and pharyngeal axes are superim-
posed on the model to help the user get the optimal head position before the procedure.

with weight 1.0. In this way, the object is treated as a rigid body.

In order to simulate the motion of the patient’s head and mandible, an articulated skeletal

structure was developed. We segmented the bones into 3 separate meshes as shown in

Figure 5.5. The joints of the skeleton were placed at the top of the neck and at the two

ends of the mandible to simulate the movement of the cervical vertebrae and the mandible

respectively. In order to keep the movements of the head and the mandible realistic, the joint

at the neck allows for 30 degrees of vertical movement. The pair of joints at two ends of

the mandible allows for 35 degrees of vertical movement. We set all the masses of the bone

particles to infinity so that they are treated as static objects. We use the hand controller to

adjust the head elevation and the jaw opening. Since there is only one cluster in each rigid

body, we do not need any skinning for the corresponding mesh, all the mesh vertices are

transformed accordingly by the rotation and the translation of that cluster.

5.4.2 Soft Tissue Deformation

We simulated soft tissues, such as the body tissue and the tongue, and the deformable ETT

as soft bodies by using cluster-based shape matching constraints [55]. Particles were firstly
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Figure 5.6: Virtual model in PBD. (left) Particle representation of the body tissue; (right)
local coordinates of shape-matching clusters.

generated using the same method as described previously for rigid bodies. Instead of having

one shape-matching cluster for rigid bodies, we generate multiple clusters for each soft body

to allow larger deformations. Clusters are introduced one at a time at particle locations, and

the process greedily removes any particles that fall within the bounds of the former, until no

particles remain. The resulting shape-matching clusters from this procedure are illustrated

in Figure 5.6. With different cluster spacing and stiffness, we can simulate different tissue

properties. Each mesh of corresponding soft body is expressed in terms of local cluster

positions through linear blend skinning [41]. Each “skinned” vertex is associated with its

closest local cluster coordinate frames within a range. Weights fall off inversely with the

square of the distance from vertex to local cluster origin. As a result, the mesh will deform

in accordance with the manipulated particles.

For this particular procedure, the ability to manipulate the epiglottis with the laryngo-

scope is critical because it determines if the user can get a clear view of the glottis, which

affects the outcome of the overall procedure. However, clusters are uniformly generated

and may not be dense enough to allow detailed deformations of small features, such as the

epiglottis. Increasing the number of clusters or adaptively generating clusters according to

geometric features could solve the problem but introducing a heavy computational overhead

and may still not solve the problem perfectly. Therefore, our solution was to create an

additional cluster (the local coordinate axes with thicker lines in Figure 5.7(b)) at the center

of the particles that belong to the epiglottis and assign all these particles to that cluster. At the

50



www.manaraa.com

Figure 5.7: Cluster modification. (first row) Cross-sectional views of a particle on the
epiglottis with its associated clusters before (a) and after (b) the cluster modification.
(second row) Frontal views of a particle on the epiglottis dragged to the upper-left direction
before (a) and after (b) the cluster modification.

same time, we removed any clusters from these particles that were incorrectly assigned. As

shown in Figure 5.7(a), some particles on the epiglottis were incorrectly connected to those

clusters that were not geomatrically close to them, which prevents the local deformation of

the epiglottis (Figure 5.7(c)). Lastly, we also removed incorrectly assigned clusters from

these skinned mesh vertices on the epiglottis so that the mesh would be deformed correctly.

In order to make the body tissue move along with the skeletal structure realistically,

we set the masses of the particles on the body tissue that are close to the bone particles to

infinity. In this way, when the user adjusts the skeletal structure, the particles on the body

tissue with infinite mass will be moved together. Since all the remaining particles on the

body tissue are connected with the particles with infinite mass through shape-matching

constraints, they will be deformed accordingly.

The tongue particles and clusters are generated in a similar way as the body tissue but

with different cluster spacing and stiffness. In order to attach the tongue to the mouth, for

each particle on the bottom side of the tongue, we find its closest mouth particles within

a threshold, and create a spring constraint between them (Figure 5.8). With the tongue
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Figure 5.8: Virtual model in PBD. (left) Particle representation of the body tissue; (right)
local coordinates of shape-matching clusters.

segmented separately, we could parameterize it so that the system can randomly introduce

small variations in size that affect the intubation difficulty. A slide bar panel is provided

(Figure 5.1) on the graphic user interface to allow the adjustment of the tongue size and

other parameters that affect the intubation difficulty. Each time when the mesh of the tongue

is changed, the underlying particles, clusters and corresponding spring constraints between

the tongue particles and the mouth particles are recreated.

The ETT is also simulated as a soft body. We set the masses of the particles on the ETT

connector as infinity so that its pose can be directly controlled by the transformation of the

EM sensor. The stiffness values of the body tissue, tongue and ETT were manually tuned

during preliminary testing experiments, until suitable visual and tactile perceptions were

achieved according to the feedback from an expert neonatologist.

5.4.3 Fluid Simulation

When performing ETI on real patients, intubators often encounter situations where patients

have excessive secretions in their mouth, such as saliva, which prevent the intubators from

getting a clear view of the glottis. Therefore, suction needs to be performed prior to the

procedure. In order to mimic this real clinical situation, saliva was simulated as fluids

in our system by adding density constraints [47]. Fluid particles were emitted from the
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locations of the salivary glands inside the mouth at a random speed during the procedure

(Figure 5.9(d)). The simulation of fluid suction was implemented by pulling the trigger on

the hand controller. A high viscosity value was set to simulate viscous effect of the saliva.

5.5 Collision Detection

In the PBD simulation layer, the virtual model of the laryngoscope was approximated

with simple collision shapes for fast collision detection against particles. We enclosed the

handle and the blade of the laryngoscope within three capsule collision shapes as shown in

Figure 5.9(b). The haptic device provides the input position and orientation for the visual

model of the laryngoscope and its collision shapes. Since the blade of the laryngoscope

is approximated with two capsule shapes, the ETT cannot pass through the blade with no

collision filter. Therefore, we only allow the blade capsule shapes to collide with other PBD

objects by setting corresponding collision shape channels and the particle phase identifiers.

We then created a signed distance field (SDF) collision shape that approximates the shape of

the blade but thicker to achieve robust collision detection (Figure 5.9(b)). We chose SDF

collision shape because SDFs are very cheap to calculate collisions compared to other types

of collision shapes since they are stored as volume textures on the GPU and have an O(1)

lookup cost. We set this SDF collision shape to collide only with the ETT particles.

Another issue with the ETT is that it is composed of thin lines of particles, which are

prone to penetrate other groups of particles. This makes it hard to insert the ETT into

either the airway or the esophagus without penetration. Therefore, we created another SDF

collision shape underneath the body by moving the body mesh inwards with a constant

offset (Figure 5.9(b)). This offset collision shape, on one hand, can prevent the ETT from

penetrating the body tissue. On the other hand, it can prevent the tongue from penetrating the

body tissue when the laryngoscope pushes the tongue against it. Moreover, when simulating

saliva, this SDF collision shape can also prevent fluid particles from leaking through the

body (Figure 5.9(c) and Figure 5.9(d)). We set this SDF collision shape to only collide with

53



www.manaraa.com

Figure 5.9: (a) and (b) are the collision shapes of the virtual model and the laryngoscope in
the rigid-body dynamics layer and the PBD layer respectively; (c) and (d) are the simulation
results before and after adding the SDF offset collision shape (yellow mesh in (b)). Without
the offset collision shape, the ETT and the tongue easily penetrate the body tissue and the
fluids are leaked through the body tissue.

the ETT, the tongue and the saliva particles.

Since the laryngoscope under interaction is kinematic and free from physics in the virtual

world, external forces from gravity or collisions will no longer have any effect on it because

the position is set absolutely by the user. The held laryngoscope could still apply forces to

dynamic objects that are free to move, but if it pushes a dynamic object against a static object

(such as the body tissue attached to the bones), the held laryngoscope would easily penetrate

the body tissue. Moreover, there is no interaction or collision between the held laryngoscope

and static objects, such as the bones. Therefore, we integrated another rigid-body dynamics

model [58] as an additional simulation layer in parallel to the PBD layer to account for the

collisions for rigid objects.

In the rigid-body simulation layer, we created the same collision shape representation

for the laryngoscope as was used in the PBD layer with three capsule shapes (Figure 5.9(a)).

The collision shape for the bones was approximated with a single mesh that is the same as

the offset collision shape used in the PBD layer, which encloses all the bones (Figure 5.9(a)).

This offset collision shape can speed up the collision detection. It can also set a boundary for

the amount of deformation that the laryngoscope could apply to the body tissue, preventing

penetration. As in the PBD layer, the kinematic laryngoscope in the rigid-body simulation

layer would have no interaction or collision with static objects. Therefore, we employed a

virtual coupling scheme by creating a dynamic proxy laryngoscope and constraining it to the
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Figure 5.10: Communication between simulation layers.

kinematic laryngoscope (blue and red capsule shapes in Figure 5.9(a)). While the kinematic

laryngoscope could penetrate a collision shape, the proxy laryngoscope will respond to

collisions and remain on the outside of the volume of the shape.

Both the offset body collision shapes in the PBD layer and the rigid-body dynamics layer

are static collision shapes and need to be updated each time the user adjusts the position

of the head, the table or the mandible. In each simulation cycle, the rigid-body dynamics

layer fetches the cluster positions from the PBD layer to update its collision shapes through

skinning. Conversely, the PBD layer receives the last non-colliding position of the proxy

laryngoscope from the rigid-body dynamics layer to update the poses of its collision shapes

of the laryngoscope (Figure 5.10).

5.6 Haptic Rendering

The simulated force applied to the haptic device must be updated at a high rate of about

1kHz to maintain a realistic haptic feedback. However, the computational process of the

collision detection, deformable models and the complex physical simulation are so time

consuming that the required update rate of haptic force could not be guaranteed. Therefore,

we implemented a multi-thread haptic rendering process to separate the haptic thread from

the physical thread. In our implementation, we used two different approaches for computing

the force response of the interaction of the laryngoscope with rigid bodies and with soft

tissues.

55



www.manaraa.com

Figure 5.11: Calculation of soft tissue force feedback. The green points are the rest poses of
the particles that are in contact with the laryngoscope. The red lines are the displacements of
particles. The yellow line on the laryngoscope shows the resulting averaged displacement.

To calculate the force feedback of rigid-body contacts, we first transformed the current

position of the haptic interface and the non-colliding position of the proxy laryngoscope to

the workspace of the haptic interface. Then, the force was calculated by simulating a virtual

spring-damper between the kinematic and the proxy laryngoscope positions. The farther

they are separated, the longer the spring is and hence the greater resistance the user will

feel, which impedes the motion of the haptic interface from further penetrating the object in

contact.

For the force feedback during the interaction with soft tissues, collision tests between

the proxy laryngoscope and the particles were computed in parallel in the haptic thread.

We calculated the force as the average of all vectors pointing from the current positions of

the particles (in contact with the proxy laryngoscope) to their rest positions (Figure 5.11),

which were backed up at the initialization of the simulation or reset after each time the

user adjusted the position of the head, the table or the mandible. We calculated an average

vector for each type of tissue (e.g., body tissue and tongue) that was in contact with the

proxy laryngoscope and multiplied each vector by a constant factor µ (stiffness of each

tissue type). We finally averaged all those vectors from each type of tissue to generate the

force feedback from soft tissues. The summation of the forces due to interactions with rigid

bodies and soft tissues was sent to the haptic device for force rendering.
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Figure 5.12: Flow chart depicting the overall algorithm of the simulator.
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5.7 Automated Visualization

With our manikin-free VR system, we can visualize an even larger set of performance

parameters in relation to the internal geometric change of the virtual model during the entire

procedure. Our full suite of enhanced visualization tools allows real-time and post-trial

viewing, visualization from different angles including cross-sectional and simulated video

laryngoscopic views and measurements on the virtual model (Figure 5.1) to provide detailed

visual feedback and analysis of multiple aspects of ETI performance. During the procedure,

real-time visualization of performance parameters, such as color-coded force on the upper

gums, will provide the trainee with visual feedback throughout the entire procedure. At the

same time, split windows showing the view of the HMD together with the cross-sectional

view and the video laryngoscopic view will provide instructors with a clear understanding of

what is happening during each step of an ETI, which is impossible in a manikin-based ETI.

After the procedure, 3D visualization of the performance from any viewpoints will provide

trainees with information about exactly where and why they failed their attempts. This

will not only decrease the time and increase the quality of intubation required to achieve

expert-level performance, but also improves retention of skills. For the instructor, post-trial

visualization is also useful for evaluation and rating of an ETI performance.

From the raw motion sequences, the simulation system extracted 12 primary performance

parameters (Table 5.2). These parameters were chosen a priori based on the qualities that

our expert instructor deemed as important features. We chose a subset of these parameters

that are interpretable for direct visualization. The rest of the parameters are used only

for statistical analysis. Based on the contact information and raycasting results returned

from the rigid-body dynamics simulation layer, we have implemented visualization of the

following performance parameters and some additional features. All these visualizations

were rendered on the final visual models to guide the trainees during the procedure.
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Figure 5.13: Color-coded force indicator on the upper gums, where green stands for accept-
able force and red stands for excessive force.

Oral, laryngeal, pharyngeal axes In order to successfully visualize the glottis during

the ETI, the head needs to be adjusted to an optimal position where the three axes are best

aligned [4]. We manually picked pivot points on the meshes of the virtual model according

to the opinion of an expert neonatologist and visualized the three axes to assist trainees in

getting the optimal position of the head (Figure 5.5).

Color-coded force on the upper gums During the ETI, the blade of the laryngoscope

needs to be adjusted to obtain a view of the glottis and force should be applied on the

mandible without pivoting on the upper gums to prevent trauma to the tissue. Therefore,

we visualized the force with color changed from green to red on the upper gum area in

real time during the procedure, where green stands for acceptable force and red stands for

excessive force (Figure 5.13). Force was estimated by calculating the penetration depth of

the laryngoscope into the upper gums. At each time step, the contact point and the surface

normal at that point is returned if there have collisions between the proxy laryngoscope

and the triangle mesh of the upper gums. We then calculate the corresponding point (as

the contact point on the proxy laryngoscope) on the kinematic laryngoscope. The vector

pointing from the contact point to the corresponding point on the kinematic laryngoscope is

the displacement vector. We further calculate the dot product between the surface normal

and the displacement vector. If the result is negative, then the displacement vector is the

penetration depth; if the result is positive, we translate the kinematic laryngoscope so that
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its blade tip overlaps with the proxy laryngoscope. We then repeat the steps we described

above to calculate the displacement vector and check if there is penetration. We manually

tuned the mapping of the amount of force to color according to the opinion of an expert

neonatologist.

Laser dot of sight line In order to assist the subject in identifying the anatomic features

viewed through the laryngoscope, a ray-triangle intersection test is performed at each time

step to find the first triangle on the mesh model that the sight line emanating from the

laryngoscope hits. We visualize the intersection point as a red dot superimposed on the mesh.

Whenever the dot is on some important features (uvula, epiglottis, esophagus or glottis), a

message showing the name of the feature will also be generated next to the laryngoscope

(Figure 5.1). The color of the dot will change to green if the subject is looking at the glottis.

Percentage of glottic opening Visibility of the glottis affects the success of inserting the

ETT into the trachea [12]. Therefore, we display the percentage of the glottic opening on

the laryngoscope handle in real time to help the subject achieve the optimal view of the

glottis with the largest visible area. A glottis plane is defined by manually selecting three

pivot points on the vocal cord as shown in red, green and blue points in Figure 5.14. The

line passing through the top and the bottom points (red and blue points) is the longest axis

of the glottis and the segment between the two points is the longest diameter of the glottis.

At each time step, an intersection point (yellow points) is calculated between the sight line

and the glottis plane. We then project the vector pointing from the bottom point to the

intersection point (blue point to yellow point) onto the longest axis. The resulting projection

is the length on the longest axis of the glottis that is visible to the subject. We further divide

the projection by the longest diameter to approximate the percentage of the glottis area that

is visible to the subject.
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Figure 5.14: Calculation of the percentage of glottic opening. A glottis plane was defined
by selecting 3 pivot points (red, green and blue) on the vocal cords. The white line passing
through the top (red) and the bottom (blue) points is the longest axis of the glottis and the
segment between the two points is the longest diameter of the glottis. The yellow point is
the intersection point between the sight line and the glottis plane.

Trial Outcome Correct ETT placement on manikin-based simulators is usually checked

by inflation test via bag-valve ventilation. The small sizes of the intubation space in neonatal

models do not allow instructors to observe the ETT placement directly. However, with

our VR simulator, not only can instructors directly observe the ETT placement through

the cross-sectional view, but also the system can automatically check if the ETT is inside

the airway or the esophagus. Mesh vertices were manually selected on the airway and

the esophagus respectively. Two oriented bounding boxes were constructed to enclose the

airway mesh vertices and the esophagus mesh vertices. At each time step, we check if any

of the ETT particles are inside the bounding boxes. A success message displays if the ETT

is in the bounding box of the airway; otherwise, a fail message displays.

5.8 Validation Study

5.8.1 Study Design

To quantify the relative realism of the VR simulator compared to the manikin-based simula-

tor, we conducted an experimental study using a modified backward transfer or concurrent

validation study [75]. The study was approved by the Children’s National Health Systems’

Institutional Review Board. A group of experts (attending neonatologists) performed ETI on
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Figure 5.15: AR and VR setup for the validation study.

both the manikin-based augmented reality (AR) simulation system and the VR simulation

system (Figure 5.15). The AR system includes a standard full-term Laerdal R© task trainer

manikin, a laryngoscope with a Miller 1 blade and a 3.0 mm ETT, which were registered

to their virtual CT scanned counterparts. The motion of the laryngoscope and the manikin

were captured by trakSTAR
TM

EM sensors.

Four conditions were tested for each subject using a cross-over design: (1) using the

AR system without enhanced visualization; (2) using the VR simulator without enhanced

visualization; (3) using the VR simulator with increased level of difficulty (without enhanced

visualization) and (4) using the VR simulator with enhanced visualization. In condition (2),

subjects intubated a virtual patient that had the same size as the manikin in the AR system

with a virtual Miller 1 blade and a virtual 3.0 mm ETT. In condition (3), the virtual patient

was configured to a smaller premature infant size with relatively larger tongue and smaller

jaw opening. The saliva simulation was turned on with specular light simulating glossy tissue

surface. A virtual Miller 0 blade and a virtual 2.5 mm ETT were used. In condition (4), the

virtual patient had the same configurations as the one in condition (2) but with full-suite of

enhanced visualization tools. Before using the AR and the VR simulators, the subjects were

provided instructions on their use and given a chance to perform one successful intubation

on each system. The order of using the AR or the VR system (condition (1) and condition

(2)) was counterbalanced, and subjects were randomly assigned to each simulator. After that,
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Figure 5.16: 3D playback of the AR and the VR systems.

each subject performed condition (3) and (4) respectively in the same order. During each

intubation attempt, motions of the laryngoscope and the ETT were tracked and recorded.

5.8.2 Questionnaire & Measures

A questionnaire with 17 questions was administered immediately following the completion

of certain conditions (Table 5.3). The questions were grouped into realism of anatomy

and soft tissue, motion consistency of tools, difficulty of level change and acceptance of

visualization. Lastly, each subject rated their overall recommendation for the VR simulator.

Each question was scored on a 5-point Likert scale, where 1 stands for “very poor” and

5 stands for “very good” (For Q10, 1 = “much easier”, 5 = “much harder” and for Q17,

1 = “definitely not recommend”, 5 = “definitely recommend”). Subjective feedback and

demographic information were collected at the end of the study.

After the trials, an expert instructor (not including the participants themselves) viewed

the 3D playback of motions and rated the performances under the 4 conditions using the

enhanced visualization tools for both systems (Figure 5.16). Performance ratings consist

of a single score on a 5-point scale. Before rating the performances, the rater engaged in

a calibration exercise, in which she viewed several bad and good performances (based on

the rater’s response during the capture stage) and give preliminary ratings with the goal of

maximizing intra-rater reliability. To minimize bias, the rater was blinded to the identity of

the subjects and the order of the playback was randomized.
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Table 5.2: Performance parameters extracted from motion.

Feature Description
Force on gum Force of laryngoscope applied against upper gums
Depth Insertion depth of laryngoscope into mouth
Pitch peaks Number of up and down movements of blade
Yaw peaks Number of side to side movements of blade
Pitch rocking Angular displacement of up and down motion of blade
Yaw rocking Angular displacement of side to side motion of blade
Attempts Number of complete attempts for successful place-

ment of ETT
Trial time Time to complete the procedure

Percentage of glottic
opening (VR)

Glottic opening area visible to the subject

Velocity of ETT tip
(VR)

Velocity of ETT tip during insertion

Head angle (VR) Angle between the adjusted pose and the initial natu-
ral pose of head

Blade slips (VR) Number of blade tip sliding off the epiglottis

In addition, the computer systems extracted 8 primary performance parameters from

the AR simulator and additional 4 more parameters from the VR simulator (Table 5.2).

Among these parameters, the pitch/yaw related parameters were extracted from the angular

displacements of the blade in the pitch/yaw directions during the procedure. In particular,

pitch/yaw peaks are those peaks on corresponding angular curves that have a prominence

of at least 5 degrees, which reflects the number of repositions of the blade. Pitch/yaw

rocking were evaluated based on the residuals between the corresponding angular curves

and their denoised curves by using wavelet transform, which quantifies the displacement

of the repositions of the blade in pitch/yaw direction. Data were analyzed using software

developed in-house and Matlab R©. To compare participants’ ratings, performance scores

and parameters between manikin and VR simulators, different levels of difficulty and

with/without visualization, we performed bootstrap paired mean tests. A P-value ≤0.05

implies a statistically significant difference between two conditions.
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5.8.3 Results

In total, 15 subjects participated in the study, with an age range of 30-61 years. The subjects

have an average of 14 years of work experience in neonatal intubation. The results of the

questionnaire are summarized in Table 5.3. Subjects’ performance scores and parameters

are presented in Figure 5.17 and Table 5.6.

Comparison between Manikin and VR With respect to the realism of the anatomy

(Q1 vs. Q2) and the soft tissue (Q3 vs. Q4) compared to live patients, subjects have rated

significantly in favor of the VR simulator (P = 0.011 and P < 0.001) (Table 5.3). In addition,

though not significant, the feelings of manikin and VR patient (Q5 vs. Q6) compared to live

patients are on average better for the VR simulator. For the motion consistency of virtual

tools in the VR simulator, subjects gave an average score of 4.0 for the laryngoscope and an

average score of 3.2 for the ETT.

The relatively lower ratings on questions Q6 to Q8 are associated with the hardware

limitations of the haptic device and the EM sensor. 56% of the subjects pointed out that

the haptic force was not strong enough to stop them from moving forward when the virtual

laryngoscope had a collision. Moreover, 33% of the subjects noticed that there was no

force resistance from the upper gums when they were rotating the blade to get a view of

the glottis. These motion inconsistencies can be explained by the fact that the haptic device

lacks torque output from rotational movements and has a maximum force output. Therefore,

torque output from 6 DOF force feedback devices with stronger maximum forces would

solve the problem and could be integrated in the future. For Q8, 44% of subjects noticed

that they could not feel the force resistance from insertion of the ETT into the mouth, which

is due to the fact that the EM sensor does not offer force feedback. Another haptic device or

other devices with force feedback would solve the problem. Also, 78% of the subject said

that the virtual ETT was too floppy compared to real ETTs and hard to control its movement.

This is a limitation of the physics simulation, which is a trade-off between precision and
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Table 5.3: Results of the questionnaire.

Condition Question Mean (SD) P-value

After (1) and
(2)

1. Realism of Manikin anatomy 3.8 (0.83)
0.011

2. Realism of VR anatomy 4.6 (0.53)
3. Realism of Manikin soft tissue 3.0 (1.00)

< 0.001
4. Realism of VR soft tissue 4.6 (0.53)
5. Feel of Manikin 3.2 (0.97)

0.667
6. Feel of VR patient 3.4 (1.13)
7. Motion consistency of scope 4.0 (1.32)
8. Motion consistency of ETT 3.2 (1.30)

After (3)
9. Realism of saliva 3.7 (0.71)

10. Difficulty of level change 4.2 (0.97)

After (4)

11. Helpfulness of three axes 4.4 (0.73)
12. Helpfulness of force indicator on upper gum 4.4 (0.53)
13. Helpfulness of laser dot 4.6 (0.53)
14. Helpfulness of percentage of glottic opening 4.1 (0.93)
15. Helpfulness of timer 4.2 (0.83)
16. Acceptance of overall visualization 4.4 (0.73)

Overall 17. Recommendation of VR 4.9 (0.33)
� 2.5-3.5 � 3.5-4.5 � ≥4.5

robustness.

The average score of subjects’ performance rated by instructors on VR for condition

(2) (4.0) is higher than that on the manikin (3.4), even though the difference did not reach

statistical significance (P = 0.105) (Figure 5.17). With respect to the subjects’ performance

parameters in those two conditions, the average force on gum and pitch rocking are both

significantly lower on VR than those on manikin (P = 0.028 and P < 0.001) (Table 5.6),

which indicate subjects performed better ETI on the VR patient than on the manikin. There is

no significant difference on the rest of the parameters except the time, which is significantly

longer on VR than on manikin (P < 0.001). This can probably be explained by the fact that

all of the subjects had experience with manikin-based simulators, but only one of them had

experience with VR simulators and none with video games.

66



www.manaraa.com

Figure 5.17: Results of performance scores rated by experts for 4 conditions.

Table 5.4: Results of performance parameters for condition (1) and (2). Mean (SD) values
are presented for each parameter. For force, depth, glottic opening and ETT velocity,
the maximum (first row) and mean (second row) values were both extracted from the
corresponding time sequences of each subject.

Condition (1) Condition (2) P-value

Force on gum
5.3±2.98 4.6±2.45 0.541
3.2±1.45 1.8±1.41 0.028

Depth
7.3±0.88 7.3±0.55 0.938
5.5±0.67 5.8±0.66 0.387

Pitch peaks 3.9±2.32 3.4±1.94 0.703
Yaw peaks 4.2±3.23 4.4±2.13 0.923
Pitch rocking 6.7±1.88 5.2±0.67 0.001
Yaw rocking 5.2±1.54 5.5±1.00 0.640
Attempts 1.0±0.00 1.0±0.00 1.000
Time 17.3±5.18 28.6±6.78 <0.001

Comparison between Levels of Difficulty The difficulty of condition (3) (Q10) has been

rated much harder compared to condition (2), with an average score of 4.2 (Table 5.3).

The result indicates that the VR simulator has the ability to simulate different levels of

difficulty, which is one important advantage over manikin-based simulators. This is essential

in developing expertise and preventing trainees from learning the skills by memory. The

realism of saliva received an average score of 3.7. Even though not strongly positive, all

the subjects stated that the simulation of saliva was realistic enough to distract them from

getting a clear view of the glottis. 44% of the subjects suggested that the saliva should have
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Table 5.5: Results of performance parameters for condition (2) and (3). Mean (SD) values
are presented for each parameter. For force, depth, glottic opening and ETT velocity,
the maximum (first row) and mean (second row) values were both extracted from the
corresponding time sequences of each subject.

Condition (2) Condition (3) P-value

Force on gum
4.6±2.4 5.0±2.31 0.623

1.8±1.41 1.7±1.09 0.635

Depth
7.3±0.55 5.4±0.64 <0.001
5.8±0.66 4.0±0.74 <0.001

Pitch peaks 3.4±1.94 8.2±2.83 0.026
Yaw peaks 4.4±2.13 9.4±3.01 0.074
Pitch rocking 5.2±0.67 6.8±1.56 0.027
Yaw rocking 5.5±1.00 5.5±0.67 0.933
Attempts 1.0±0.00 1.7±0.52 0.046
Time 28.6±6.78 59.7±28.19 0.008

Percentage of 69.7±14.56 54.1±32.08 0.160
glottic opening 62.3±13.21 42.2±38.75 0.076

ETT Velocity
18.5±5.72 32.6±28.16 0.108
6.1±1.51 5.8±2.68 0.764

Head angle 18.0±7.57 17.7±8.84 0.928
Blade slips 0.3±0.50 0.8±0.76 0.339

a foamier appearance.

In addition, though not statistically significant, the average score in condition (3) is

lower than that in condition (2) (3.6 and 4.0, P = 0.215) (Figure 5.17). With respect to

the performance parameters, there are significant increases in pitch peaks and rocking in

condition (3) compared to condition (2) (P = 0.022 and P = 0.024) (Table 5.6), which

indicate that increasing the difficulty level caused more repositions of the blade with a larger

maximum displacement. Moreover, the subjects had more attempts (P = 0.042) and spent

longer time (P = 0.008) with increased level of difficulty. The maximum and mean depth in

condition (3) are both significantly smaller than that in condition (2) (P < 0.001 and P <

0.001), which is because the virtual model in condition (3) is a premature infant.
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Table 5.6: Results of performance parameters for condition (2) and (4). Mean (SD) values
are presented for each parameter. For force, depth, glottic opening and ETT velocity,
the maximum (first row) and mean (second row) values were both extracted from the
corresponding time sequences of each subject.

Condition (2) Condition (4) P-value

Force on gum
4.6±2.45 3.1±1.36 0.014
1.8±1.41 1.5±1.06 0.160

Depth
7.3±0.55 7.3±0.72 0.744
5.8±0.66 5.4±0.50 0.133

Pitch peaks 3.4±1.94 2.3±1.00 0.113
Yaw peaks 4.4±2.13 2.7±0.87 <0.001
Pitch rocking 5.2±0.67 5.4±0.58 0.602
Yaw rocking 5.5±1.00 4.2±0.16 <0.001
Attempts 1.0±0.00 1.0±0.00 1.000
Time 28.6±6.78 20.3±6.83 0.002

Percentage of 69.7±14.56 81.5±23.87 0.200
glottic opening 62.3±13.21 80.6±25.30 0.041

ETT Velocity
18.5±5.72 19.9±7.21 0.550
6.1±1.51 8.1±2.84 0.061

Head angle 18.0±7.57 21.2±4.23 0.120
Blade slips 0.3±0.50 0.1±0.33 0.211

Evaluation of Enhanced Visualization All the questions regarding the enhanced visual-

ization (Q11 to Q16) received average scores above 4.0, which indicate that our visualization

tools are helpful in guiding trainees during the procedure. In particular, the visualization

of the laser dot of sight line received an average score of 4.6, which indicates that the

identification of the glottis is one of the most critical factors in performing a successful

intubation.

Subjects’ scores are on average higher in condition (4) compared to their scores in

condition (2) (4.2 and 4.0, P = 0.517) (Figure 5.17). By comparing the performance

parameters between these two conditions (Table 5.6), the maximum force on gum, the

yaw peaks/rocking and the time are all significant lower in condition (4) (P = 0.014, P <

0.001, P < 0.001 and P = 0.002). The mean percentage of glottic opening are on average

significantly higher in condition (4) with enhanced visualization than in condition (2) (P =
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0.041). Though not significant, the head angles are also on average larger in condition (4)

than those in condition (2) (21.2◦ vs. 17.7◦, P = 0.124), which are closer to the optimal

angle for intubation of the virtual patient (26◦).
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Chapter 6: Endotracheal Intubation Skill Assessment

Manual assessment from experts in medical training is a time-consuming and tedious process.

Such subjective, highly variable, and resource-intensive assessment method may not only

introduce interrater/ intrarater variability, but also represent a serious limitation in many

large-scale training programs. Moreover, poor visualization during the procedure prevents

instructors from observing the events occurring within the manikin or the patient, which

introduces an additional source of error into the assessment. The small sizes of the operation

space in the manikin or the patient do not allow instructors to fully visualize the events

occurring within the simulator to provide feedback to learners. Use of laryngoscopic views

provides instructors with better views of the procedure. However, they do not provide

complete 3D information concerning the relationship of the instrument with the internal

anatomy. Moreover, current simulators do not provide quantitative feedback regarding the

quality of the attempt. Performance assessments require experts to review and rate individual

examinee performance, which is highly variable and resource-intensive.

These limitations have driven efforts for the development of automated systems for

performance assessments, which is essential in acquiring precise data, setting objective

standards, and quantifying the performance. EM, inertial, and optical sensors have been used

to capture the motions of the laryngoscope and limited fiducial points on manikins or patients

[11][15][16][64][85]. Force transducers and pressure sensitive films have also been used

to measure the forces imparted on specific parts of the manikin or patient [15][16][26][85].

Although these efforts provide some additional information about trainees’ performance,

they do not provide the complete picture of the interaction of the laryngoscope within

the manikin. Moreover, these works only included preliminary analysis on differentiating

subjects with different skill levels, but no automated assessment method was developed for

skill classification or score prediction on subjects’ performances. Capturing the complete

71



www.manaraa.com

motion is difficult without a virtual representation of all the components. A few computer-

based ETI simulators [65][83][87] have been developed for training medical professionals

as reviewed in Section 2.1.2. However, since the virtual models are not physically simulated,

and collisions between different object types are not implemented, their system are not

capable of capturing various performance parameters with respect to the internal geometric

change of the virtual model. Therefore, they suffer from the same issues as the above

manikin-based simulators by not providing a complete picture of the entire procedure. With

respect to automated skill assessment, a few of works have been using hidden Markov

model [79][91] or convolutional neural network [84] to classify surgical skills and/or predict

performance score of a surgery. However, all these machine learning methods lack of

interpretable result, which can be given as feedback that is understandable and intuitive

in helping trainees reach higher skill levels. In order to make the assessment model more

interpretable, some works have been using fully convolutional neural networks [22][23],

regression models [20][91], or multilevel models [33] to predict the overall score of surgical

performances. However, to the best of our knowledge, no automated assessment system has

been developed for ETI training.

In this chapter, we aim to address the notable gaps in previous works by developing

an interpretable score prediction model that is based on our automated scoring pipeline as

described in Section 3.9.2 to mimic the evaluation of human raters. In Chapter 5, we have

presented a physics-based VR ETI simulation system that captures the entire motions of

the laryngoscope and the ETT in relation to the internal anatomy of the virtual patient. The

ETI system provides a complete visualization of the procedure, offering instructors with

comprehensive information for accurate assessment. By using the performance parameters

extracted from the motions and the scores rated by experts, a multinomial regression model

is developed to automatically assess the ETI performances.
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Figure 6.1: Pipeline of ETI automated scoring algorithm.

6.1 Endotracheal Intubation Automated Scoring

To develop an automated assessment system for the ETI performance, we aimed to select

important performance parameters on which we can build an interpretable model for the

score prediction of intubation performances. Based on the automated scoring algorithm

described in Section 3.9.2, the process of finding the optimal prediction model for the ETI

performance is shown in Figure 6.1.

From the raw motion sequences, the simulation system extracts 12 primary performance

parameters (Table 6.1). These parameters were chosen a priori based on the qualities that

our expert instructor deemed as important features. These features help further characterize

ETI performance and reflect the qualities of motion that are subtle and difficult to quantify

by merely looking at the motion playback.

With all the performance parameters (features), we first select the ones that have statisti-

cally significant marginal associations with the score using the multinomial GEE method to

account for the repeated measures [82]. A feature is considered marginally significant if
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Table 6.1: Performance parameters extracted from motion.

Feature Description
Force on gum Force of laryngoscope applied against upper gums
Depth Insertion depth of laryngoscope into mouth
Pitch peaks Number of up and down movements of blade
Yaw peaks Number of side to side movements of blade
Pitch rocking Angular displacement of up and down motion of blade
Yaw rocking Angular displacement of side to side motion of blade
Attempts Number of laryngoscope attempts for successful

placement of ETT
Trial time Time to complete the procedure
Percentage of glottic
opening

Glottic opening area visible to the subject

Velocity of ETT tip Velocity of ETT tip during insertion
Head angle Angle between the adjusted pose and the initial natu-

ral pose of head
ETT attempts Number of ETT attempts

the multinomial regression model against this feature has a P-value < 0.05. In addition, for

those marginally significant features, if any two are highly correlated (correlation > 0.8),

we exclude one of them from the subsequent steps to prevent collinearity.

We then construct a classification tree for the score with the selected features to identify

predictive features and their discontinuous breakpoints, which lead to the piecewise linear

terms considered as a part of the candidate term set. We consider these features within three

layers from the root of the tree as the most predictive ones. With the linear terms and the

piecewise linear terms, we generate their two-way interaction terms.

The candidate model set is determined by the forward selection algorithm (see Section

subsection 3.9.2) using the candidate term set acquired from above, which contains three

categories of terms: linear terms (the marginally significant features which did not appear in

the classification tree), piecewise linear terms (the predictive features in the classification

tree), and their two-way interaction terms. Lastly, with the candidate model set S, we find

the optimal model that has the highest classification accuracy by performing LOOCV.
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6.2 Study Design

This study was conducted in the neonatal intensive care unit at Children’s National Hospital,

Washington, DC. A total of 20 subjects were recruited in the study, including both attending

neonatologists and anesthesiologists with a range of 5-40 years of work experience in

neonatal intubation. The study was approved by the Children’s National Health Systems’

Institutional Review Board. Before using the VR simulator, the subjects were provided

instructions on its use and given a chance to perform one successful intubation. After that,

each subject performed multiple trials (range from 2 to 8 trials) on the system. During each

intubation attempt, all aspects of the motion, including the kinematic data of the instruments

(laryngoscope and the endotracheal tube) and the performance parameters, were recorded

and streamed to a computer for post-trial assessment.

After the trials, an expert rater (not including the participants themselves) viewed the

3D playback of motions and rated the performances using our enhanced visualization

tools. Performance ratings consisted of a single score on a 3-point scale. Before rating

the performances, the instructor engaged in a calibration exercise to maximize inter-rater

reliability. To minimize bias, the rater was blinded to the identity of the subjects and the

order of the playback was randomized. Data were analyzed using software developed

in-house, Matlab R©, and RStudio R©.

6.3 Results

In total, 81 successful trials were collected in our experiment. Figure 6.2 shows the cor-

relation between each of these features with the corresponding score rated by the expert.

The marginally significant features were determined, including “Force”, “Pitch Peaks”,

“Yaw Peaks”, “Yaw Rocking”, “Attempts”, “Time”, “Glottic %”, “Head Angle”, and “ETT

Attempts”. We extracted both the mean and the maximum value for these time series features

and found that the maximum values have higher associations with the score. Among these
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Figure 6.2: Results of the associations between the performance parameters (vertical axes)
and the score (horizontal axes). The P-value from each GEE model is shown at the top of
each plot.

marginally significant features, Pitch Peaks and Yaw Peaks are highly correlated (correlation

= 0.87, Figure 6.3). To prevent collinearity, we kept Pitch Peaks in the subsequent analysis

because the rater concentrated more on the up and down motion in the assessment.

The result of the classification tree shows that the most predictive features include

“Time”, “Head Angle”, and “Yaw Rocking” (Figure 6.4). These features led to the piecewise

linear terms considered in the forward selection algorithm. With the linear terms and

the piecewise linear terms, we generated their two-way interaction terms as a part of the

candidate term set.

The optimal multinomial regression model obtained after the forward selection and the
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Figure 6.3: The result of the multi-colinearity test.

LOOCV is given as follows: For j =1, 2,

y j = log
(

P(Score≤ j)
1−P(Score≤ j)

)
= β0 j +β1 ·Ff +β2 ·Fa +β3 ·Fg (6.1)

+β4 ·Fyr · I(Fyr ≥ 4.6)+β5 ·Fha · I(Fha < 18)+β6 ·Ft · I(Ft < 24.0)

+β7 ·Ft · I(24.0≤ Ft < 36.0)+β8 ·Ft · I(Ft ≥ 36.0)

+β9 ·Fyr · I(Fyr ≥ 4.6) ·Ft · I(Ft < 24.0)

+β10 ·Fyr · I(Fyr ≥ 4.6) ·Ft · I(24.0≤ Ft < 36.0)

+β11 ·Fha · I(Fha < 18) ·Ft · I(24.0≤ Ft < 36.0)

+β12 ·Fha · I(Fha < 18) ·Fg +β13 ·Ft · I(24.0≤ Ft < 36.0) ·Ff

+β14 ·Ft · I(Ft ≥ 36.0) ·Ff ,

where Ff , Fa, Fg, Fyr, Fha, and Ft represent the features Force, Attempts, Glottic %, Yaw

Rocking, Head Angle, and Time respectively. I(·) is the indicator function for the piecewise
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Figure 6.4: The result of the classification tree.

linear terms, and βk, j = 1, ...,14 are the coefficients. The estimations of the coefficients

together with their standard errors (SE) and P-values are given in Table 6.2. If we focus on

the significant terms where the P-values are < 0.05, we can conclude that: (1) The score

is generally negatively associated with a subject’s force (applied on the upper gums) and

number of attempts (number of blade insertions); (2) Subjects’ yaw rocking (displacement

of side to side motion of the blade) are also generally negatively associated with the score,

especially when the yaw rocking is above 4.6; (3) The score is significantly negatively asso-

ciated with the time spent for each trial. This coincides with our assumption that the selected

features in the optimal assessment model are correlated with the motion characteristics that

instructors consider important in training assessment.

Based on the coefficient estimates obtained from Equation 6.1, the probability P(Score=

y j), j = 1,2,3 for a new trial can be derived from the fitted values of y j, and the predicted

score corresponds to the one with the largest probability, which provides an automated

score assessment. The LOOCV classification accuracy of this automated scoring system is

80%, which indicates that our system can reliably conduct a consistent and standardized

assessment for ETI training and would obviate the need to have an instructor present to rate

each trial and would be more objective and less variable. To this end, the machine learning

algorithm will need further refinement to allow it to learn from a panel of expert instructors
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Table 6.2: The set of features and interactions of the optimal score prediction model.

Term Coefficient Estimate SE P-value
Intercept -16.313 (β01) 4.677 <0.001
Intercept -11.496 (β02) 3.892 0.003
Ff 0.733 (β1) 0.338 0.030
Fa 4.055 (β2) 1.400 0.004
Fg -0.035 (β3) 0.029 0.228
Fyr · I(Fyr ≥ 4.6) 0.668 (β4) 0.186 <0.001
Fha · I(Fha < 18) -0.101 (β5) 0.148 0.495
Ft · I(Ft < 24.0) 0.426 (β6) 0.140 0.002
Ft · I(24.0≤ Ft < 36.0) 0.593 (β7) 0.188 0.002
Ft · I(Ft ≥ 36.0) 0.188 (β8) 0.063 0.003
Fyr · I(Fyr ≥ 4.6) ·Ft · I(Ft < 24.0) -0.027 (β9) 0.015 0.067
Fyr · I(Fyr ≥ 4.6) ·Ft · I(24.0≤
Ft < 36.0)

-0.017 (β10) 0.007 0.080

Fha · I(Fha < 18) ·Ft · I(24.0≤
Ft < 36.0)

-0.011 (β11) 0.005 0.170

Fha · I(Fha < 18) ·Fg 0.004 (β12) 0.002 0.260
Ft · I(24.0≤ Ft < 36.0) ·Ff -0.029 (β13) 0.016 0.068
Ft · I(Ft ≥ 36.0) ·Ff 0.023 (β14) 0.017 0.183

who will develop parameters using a Delphi process; similarly, a larger training sample and

a separate validation sample will be required to yield a more robust model.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have presented a practical and efficient simulation framework that

offers a completely new training platform with realistic and configurable immersive virtual

environments. Our simulation framework is able to simulate complex scenarios with rigid

bones, soft tissues and fluids in a unified particle representation at interactive rates using

stable and efficient PBD method and allow them to interact with each other seamlessly within

the same environment. The test-bed application of neonatal ETI simulation demonstrated the

utility of the proposed simulation framework. While the results of this dissertation contribute

primarily to neonatal ETI procedure, the interaction approach and simulation could be easily

adapted to other multi-modal surgical simulation scenarios that involve interactions between

surgical tools and rigid/deformable anatomical structures in virtual environments, which

offers a flexible solution for a variety of medical simulation domains and minimizes the

efforts required for development. Results from the validation study indicate the anatomy and

soft tissue of our VR simulator are more realistic than the manikin-based simulator. Most

importantly, our VR simulator is capable of simulating varying levels of difficulty, capturing

all motions and giving a complete visualization of the procedure, making the approach a

promising platform for medical simulation and training.

Our automated assessment system can extract and visualize a whole set of performance

parameters for real-time guidance and quantitatively correlate them with qualities that

instructors consider important in their subjective assessment of performance. With these

extracted performance parameters and scores rated by experts, we have developed an

automated scoring system that gives a consistent and complete evaluation of each trial,

which would obviate the need to have an instructor present to rate each trial and would be

more objective and less variable.
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7.2 Future Work

The simulation framework can be enhanced in a number of ways to aide continuing develop-

ment of improved medical simulations.

Immersion is an important part of the simulation-based learning experience. In the

future version of the framework, advance physically-based rendering, such as sub-surface

scattering, shadows, and decals can be integrated besides standard rendering capabilities

to increase the visual realism of the virtual models. The realism of the mouth secretions

can be improved by simulating spray and foam using diffuse particles. These particles can

be generated automatically when fluid particles collide, according to their kinetic energy

and relative velocity. The virtual environment can also be improved by mimicking realistic

hospital environment. With respect to the haptic realism, 6-DOF force feedback haptic

devices with higher maximum forces could be integrated in the future to compensate for

lacking of rotational force feedback from manipulating the medical instrument during the

interaction with virtual objects. Multiple haptic devices could also be integrated for some

procedures that need bimanual operations.

Our generalizable framework enables new simulators to be built efficiently. We will

demonstrate the validity of the framework by transitioning much of the code from our

existing neonatal ETI simulator to a new medical domain (decompressive hemicraniotomy

for trauma (DHT) in neurosurgery).

Our current automated assessment tools provides important automated visual feedback,

such as performance parameters superimposed on the virtual model to give trainees real-time

feedback, but it lacks the interactivity, contextual awareness, and natural communication,

which are the key strengths of live coaching. In the future, we can push this further to develop

a virtual coach to deliver effective and efficient feedback in addition to detailed evaluation,

demonstrations, and individualized deliberate practice sessions. Automated intelligent

coaching offers the promise of human-like feedback in training and skills assessment.
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Machine learning algorithms can be used to determine what information to provide at

various points of a medical procedure, as well as how to convey the information in a

natural and effective way. The resulting automated intelligent coaches will not only provide

information that is optimized for human expectations and cognitive/perceptual abilities,

but also is highly sensitive to the immediate procedural demands and the larger spatio-

temporal context. These automated intelligent coaches will potentially reduce the need for

expert human trainers, thus opening the door for skills assessment and refresher training of

physicians in remote areas. The automated scoring can also be improved using deep learning

algorithms, such as convolutional neural networks. The kinematic multivariate series motion

data rather than hand-crafted performance parameters will be used for the development of

the automated virtual coaching and scoring system. The approach can be generalized to

accommodate a wide variety of procedures that have kinematic VR simulation data of any

length and complexity.

Finally, further studies will be conducted to test the long-term training effectiveness of

the VR system and the automated assessment system on learning and patient outcomes. We

will conduct quantitative studies of ETI training on a group of medical residents and follow

them through their 3-year residency in the NICU. This study has the potential to determine

the quantitative relationship between simulator realism/better visualization and ETI training

outcome.
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